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Chapitre 1

Éléments de la géométrie

différentielle

1.1 Rapports

Les leçons concernées (2025) sont :

214 Théorème d’inversion locale, théorème des fonctions implicites. Illus-

trations en analyse et en géométrie.

Rapport 2024 : Les deux théorèmes fondamentaux auxquels cette leçon

est consacrée offrent une belle utilisation de la complétude, qu’il convien-

dra d’évoquer. La démonstration de l’un de ces deux théorèmes peut

parfaitement faire l’objet d’un des deux développements. On pourra par

exemple mettre en pratique, sur des exemples bien choisis, le théorème

des fonctions implicites au moins dans le cas de deux variables réelles,

pour enrichir le plan avec profit.

Des applications significatives aussi bien en analyse qu’en géométrie sont

attendues : problèmes d’optimisation sous contraintes (inégalité de Höl-

der, inégalité d’Hadamard, etc), régularité des racines d’un polynôme en

fonction des coefficients, etc.

La méthode des multiplicateurs de Lagrange a bien évidemment toute sa

place dans cette leçon, à condition qu’elle soit illustrée par des exemples.

L’interprétation de l’énoncé en termes d’espace tangent est visuellement

éclairante et permet d’éviter les éventuelles confusions résultant de rai-

sonnements purement matriciels. Les candidates et candidats solides peuv-

ent s’intéresser à l’étude locale d’applications suffisamment régulières
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(submersions, immersions, théorème du rang constant, lemme de Morse),

au lemme de Sard, ainsi qu’aux sous-variétés de Rn.

215 Applications différentiables définies sur un ouvert de Rn. Exemples et

applications.

L’idée de départ de cette leçon est qu’une fonction suffisamment régulière

se comporte localement comme une application linéaire. De nombreuses

différentielles usuelles (notamment issues de l’algèbre linéaire) peuvent

ainsi être obtenues en calculant directement un développement limité.

Des exemples significatifs en dimension 2 et 3 pourront venir illustrer

la différence fondamentale avec la dimension 1. Les dérivées partielles

lorsqu’elles existent pourront clarifier l’expression de nombreuses diffé-

rentielles ainsi que la règle de la chaîne.

Les candidates et candidats solides peuvent s’intéresser la notion de dif-

férentielle seconde pour les fonctions de classe C2, à la différentielle de

l’exponentielle matricielle, ainsi qu’aux points où celle- ci est un difféo-

morphisme local, aux fonctions harmoniques et à leurs propriétés élémen-

taires, à la caractérisation des fonctions holomorphes et son interprétation

géométrique.

Pour ce qui concerne les applications, de nombreux thèmes relatifs aux

leçons 214 ou 219 sont ici appropriés.

219 Extremums : existence, caractérisation, recherche. Exemples et appli-

cations.

Cette leçon offre aux candidates et candidats une multitude d’approches

possibles : utilisation de la topologie, du calcul différentiel, de la convexité

(fonctions convexes, projection sur un convexe fermé et leurs multiples

applications), de l’holomorphie.

Les candidates et candidats peuvent proposer des problèmes d’optimi-

sation sous contraintes, si possible autres que la preuve de l’inégalité

arithmético-géométrique. À ce sujet, une bonne compréhension de la mé-

thode des multiplicateurs de Lagrange requiert celle de la notion d’espace

tangent, qui en donne une justification beaucoup plus claire que certains

raisonnements purement matriciels. Les algorithmes de recherche d’ex-

tremums ont également leur place dans cette leçon (méthode de Newton,

du gradient à pas optimal, problème des moindres carrés, etc).

Les candidates et candidats solides peuvent s’intéresser aux diverses ver-

sions du principe du maximum (fonctions holomorphes ou harmoniques,
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équations aux dérivées partielles), au calcul des variations, ou réfléchir à

l’unicité de la meilleure approximation dans divers espaces fonctionnels,

à commencer par celle des fonctions continues sur un segment par des

polynômes de degré au plus égal à d.

1.2 Théorème d’inversion locale

Théorème 1.2.1. (Inversion locale.) Soit U ⊂ Rn un ouvert et soit f : U → Rn

une fonction de classe C1. Soit a ∈ U tel que df(a) : Rn → Rn est inversible.

Alors il existe un ouvert V ⊂ U contenant a et un ouvertW ⊂ Rn contenant f(a)

tels que f(V ) = W et la fonction induite f : V →W est un difféomorphisme.

On dit dans ce cas que f est un difféomorphisme local en a.

Démonstration. 1 On va commencer par simplifier le contexte et montrer

qu’on peut se placer dans le cas a = f(a) = 0, df(a) = I.

On pose U ′ = U − a et g : U ′ → Rn définie par

g(z) = df(a)−1(f(a+ z)− f(a)
)

pour tout z ∈ U ′.

L’ouvert U ′ contient 0, g(0) = 0 et par composition, g est de classe C1 et

dg(0) = In.

Si on trouve deux ouverts V ′ 3 0, W ′ 3 0 tels que g : V ′ → W ′ est un

difféomorphisme, alors l’égalité f(x) = f(a) + df(a)g(x− a) implique que f est

une bijection de V = V ′ + a sur W = f(a) + df(a)W ′, ce qui est un ouvert

contenant f(a).

Les fonctions inverses sont liées par f−1(y) = g−1
(

[df(a)]−1(y− f(a))
)

+ a,

ce qui montre que f−1 est aussi de classe C1 et f : V →W un difféomorphisme.

2 On suppose désormais

a = 0, f(0) = 0, et df(0) = In, (1.1)

et on trouvera des ouverts V 3 0 et W 3 0 tels que

f(V ) = W et que f : V →W est bijective. (1.2)

Comme la fonction df : U → L(Rn) est continue, il existe r > 0 tel que

B(0, r) ⊂ U et

∀x ∈ B(0, r), ‖df(x)− In‖ ≤
1
2 . (1.3)

On pose W = B(0, r2 ) et

V = f−1(W ) ∩B(0, r) =
{
x ∈ Rn : ‖x‖ < r et ‖f(x)‖ < r

2
}
.
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Puisque f est continue, V est un ouvert ; il est clair que V contient 0 et est

inclus dans U , et que f(V ) ⊂ B(0, r2 ). Montrons qu’en réalité, f est bijective de

V sur W .

Pour cela, on fixe y ∈ W = B(0, r2 ). La recherche de son inverse se fera par

le théorème de point fixe. Associons à y la fonction ϕy : U → Rn définie par

ϕy(x) = x−
(
f(x)− y).

On observe que ϕy(x) = x si et seulement si f(x) = y.

La fonction ϕy est différentiable et par addition, dϕy(x) = In − df(x) pour

tout x ∈ U . Donc par (1.3), ‖dϕy(x)‖ ≤ 1
2 pour tout x ∈ B(0, r). La boule

fermée B(0, r) est convexe donc d’après l’inégalité des accroissements finis, on

a

∀x, x′ ∈ B(0, r), ‖ϕy(x)− ϕy(x′)‖ ≤ 1
2 ‖x− x

′‖, (1.4)

c’est-à-dire, ϕy est 1
2 -Lipschitzienne.

De plus, f(0) = 0 donc ϕy(0) = y, et en appliquant l’inégalité triangulaire,

on obtient pour tout x ∈ B(0, r),

‖ϕy(x)‖ 6 ‖ϕy(x)− ϕy(0)‖+ ‖ϕy(0)‖ ≤ 1
2 ‖x‖+ ‖y‖ < r

2 + r

2 = r.

Donc ϕy
(
B(0, r)

)
⊂ B(0, r) ⊂ B(0, r). La boule fermée B(0, r) est un espace

métrique complet donc d’après le Théorème du point fixe de Banach, il existe

un unique x ∈ B(0, r) tel que ϕy(x) = x. Puisque ϕy envoie la boule fermée

B(0, r) dans la boule ouverte B(0, r), x appartient à cette dernière. On a donc

x ∈ V et f(x) = y. Comme le point fixe de ϕy sur B(0, r) est unique, x est

l’unique élément de V tel que f(x) = y. Ceci étant vrai pour tout y ∈ B(0, r2 ),

on obtient la bijectivité de f .

3 Il reste maintenant à vérifier que l’application inverse

f−1 : W = B(0, r2 ) −→ V

est de classe C1. En sachant que sa différentielle est nécessairement df−1(y) =

[df(f−1(x))]−1, il suffit de montrer qu’elle est différentiable.

Montrons d’abord que f ne diminue pas beaucoup les distances. Pour tout

x, x′ ∈ V et pour tout y ∈W on a, par (1.4),

‖
(
x− (f(x)− y)

)
−
(
x′− (f(x′)− y)

)
‖ = ‖x−x′−

(
f(x)− f(x′)

)
‖ 6 1

2 ‖x−x
′‖

(donc cette expression ne dépend pas de y), d’où par l’inégalité triangulaire

‖f(x)− f(x′)‖ > 1
2 ‖x− x

′‖. (1.5)
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Cela implique notamment que f−1 est 2-Lipschitzienne : ‖f−1(y)− f−1(y′)‖ 6

2‖y − y′‖ pour tous y, y′ ∈W .

Ensuite, par (1.3), df(x) est inversible pour tout x ∈ B(0, r), avec l’inverse

de norme ‖[df(x)]−1‖ 6 2 :

‖[df(x)]−1‖ =
∥∥∥ ∞∑
k=0

(I − df(x))k
∥∥∥ ≤ ∞∑

k=0

(1
2

)k
= 2.

On peut montrer maintenant par définition que pour y ∈ W , l’application

T = [df(f−1(y))]−1 est la différentielle de f−1 en y. Soit α > 0 tel que B(y, α) ⊂

W . Pour tout y′ ∈ B(y, α) on note x = f−1(y), x′ = f−1(y′), et on obtient :

‖f−1(y′)− f−1(y)− T (y′ − y)‖ = ‖T
(
df(x)(x′ − x) + f(x)− f(x′)

)
‖

6 2 ‖f(x′)− [f(x) + df(x)(x′ − x)]‖. (1.6)

Comme f est différentiable en x, pour tout ε > 0 il existe δ > 0 tel que pour

x′ ∈ B(x, δ) (on peut supposer cette boule contenue dans V ) on a

‖f(x′)− [f(x) + df(x)(x′ − x)]‖ < ε‖x− x′‖.

Comme f−1 est 2-Lipschitzienne, il suffit de poser β = min(α, δ/2) pour ga-

rantir, pour tout y′ ∈ B(y, β), l’inclusion x′ ∈ B(x, δ). On peut donc majorer

l’expression (1.6) par

< 2ε‖x− x′‖ 6 4ε‖y − y′‖,

y′ ∈ B(y, β), ce qui montre la différentiabilité de f−1.

Évidemment, df(a) est inversible si et seulement si det
(
Jf (a)

)
6= 0.

A priori, il n’y a aucune raison pour qu’un difféomorphisme local soit un

difféomorphisme au sens global du terme. Nous verrons au Corollaire 1.2.4 com-

ment déduire une version ‘globale’ du Théorème d’inversion locale.

Exemple 1.2.2. Soit f : Mn(R)→Mn(R), A 7→ A2. Pour A,H ∈Mn(R) on a

f(A+H)− f(A) = (A+H)2 −A2 = AH +HA+H2.

Comme H2 = o(‖H‖), H → 0, l’application linéaire L : H 7→ AH +HA est la

différentielle df(A) de f en A.

Si A = I, on a df(I)(H) = 2H et df(I) = 2IMn(R). Cette application est

inversible, donc f est un difféomorphisme local en I : il existe un ouvert W

contenant I tel que la racine carrée f−1 est bien définie et de classe C1 sur W .

Exercice 1.2.3. Obtenir la conclusion similaire pour exp : X 7→ eX surMn(R).
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Corollaire 1.2.4. (Inversion globale.) Soient U ⊂ Rn un ouvert et f : U → Rn

une fonction injective de classe C1. Si, pour tout x ∈ U , l’application linéaire

df(x) : Rn → Rn est inversible, alors l’image f(U) est un ouvert de Rn et la

fonction f : U → f(U) est un difféomorphisme.

Démonstration. Puisque f est injective, la fonction induite f : U → f(U) est

une bijection. On note f−1 : f(U) → U sa fonction réciproque. Soit y ∈ f(U)

et soit x = f−1(y). Par hypothèse, df(x) est inversible donc par le Théorème

1.2.1, il existe un ouvert V ⊂ U contenant x et un ouvert W contenant y tels

que f(V ) = W et f : V → W est un difféomorphisme. Pour plus de clarté, on

notera ici f|V cette fonction restreinte.

D’une part, l’ouvertW est inclus dans f(U). Ainsi tout point de f(U) admet

un voisinage ouvert inclus dans f(U), ce qui prouve que f(U) est ouvert. D’autre

part, la restriction de f−1 à W coincide avec (f|V )−1 et cette fonction est de

classe C1. Donc f−1 est de classe C1 au voisinage de y. Ceci étant vrai pour

tout y ∈ f(U), on obtient que la fonction f−1 est de classe C1.

Exercice 1.2.5. 1. Montrer que l’application

ϕ : (r, θ) 7→ (x, y) = (r cos θ, r sin θ)

est un C1-difféomorphisme de l’ouvert ]0,∞[× ]− π, π[ sur le plan privé

de la demi-droite R−. Si f(x, y) = g(r, θ), donner les formules de passage

entre les dérivées partielles de f et celles de g.

2. Soit U le plan privé de l’origine, et f(x, y) = (x2 − y2, 2xy). Montrer

que f est un difféomorphisme local à tout point de U mais n’est pas un

difféomorphisme global.

3. Soit h l’application de R2 dans R2 définie par (x, y) 7→ (ex cos y, ex sin y).

Montrer que h est de classe C1 dans R2 ; que dh(x, y) est inversible pour

tout (x, y) de R2 ; mais que h n’est pas un homéomorphisme de R2 sur

h(R2).

1.3 Théorème des fonctions implicites

On suppose connu le théorème de difféomorphisme local.

Exemple : x2 + y2 = R2 est le graphe d’une fonction y = h(x) si y 6= 0,

x = h(y) sinon ; à remarquer que 2y = ∂

∂y
(x2 + y2 −R2).
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Théorème 1.3.1. (Fonctions implicites.) Soit U ⊂ Rp × Rn un ouvert et soit

f : U → Rn une fonction de classe C1. Soit a = (x0, y0) ∈ U tel que f(x0, y0) = 0

et l’application linéaire ∂yf(x0, y0) : Rn → Rn est inversible.

Alors il existe un ouvert V ⊂ Rp contenant x0, un ouvert Ω ⊂ U contenant

(x0, y0) et une fonction ϕ : V → Rn de classe C1 tels que pour tout (x, y) ∈ U ,

{
(x, y) ∈ Ω et f(x, y) = 0

}
⇐⇒

{
x ∈ V et y = ϕ(x)

}
. (1.7)

Notez que si dans cet énoncé on partait d’une fonction f : U → Rm, l’hypo-

thèse d’inversiblité ∂yf(x0, y0) imposerait la condition n = m. C’est pourquoi

on se place d’emblée dans ce cadre.

Démonstration. On définit g : U → Rp × Rn en posant

g(x, y) =
(
x, f(x, y)

)
pour tout (x, y) ∈ U.

Puisque f(x0, y0) = 0, on a g(x0, y0) = (x0, 0). De plus la fonction g est de

classe C1 et

∀ (x, y) ∈ U, ∀ (h, k) ∈ Rp × Rn,
[
dg(x, y)

]
(h, k) =

(
h,
[
df(x, y)

]
(h, k)

)
.

Soient L = dg(x0, y0) ∈ L(Rp × Rn), A = ∂xf(x0, y0) ∈ L(Rp,Rn) et B =

∂yf(x0, y0) ∈ L(Rn). D’après ce qui précède, on a

L(h, k) =
(
h,A(h) +B(k)

)
pour tout (h, k) ∈ Rp × Rn. Par hypothèse, B est inversible, ce qui permet de

définir une application T ∈ L(Rp × Rn) en posant

T (u, v) =
(
u,−B−1A(u) +B−1(v)

)
pour tout (u, v) ∈ Rp × Rn.

On vérifie que T ◦L et L◦T sont égaux à l’identité de Rp×Rn, donc L = dg(x0, y0)

est inversible (d’inverse T ).

Nous sommes donc en mesure d’appliquer le Théorème d’inversion locale à g

au point (x0, y0). D’après celui-ci, il existe un ouvert Ω ⊂ U contenant (x0, y0)

et un ouvert Ω′ ⊂ Rp×Rn contenant (x0, 0) tels que g(Ω) = Ω′ et g : Ω→ Ω′ est

un difféomorphisme. Quitte à restreindre, on peut supposer que Ω′ = V × V ′,

avec V ⊂ Rn ouvert contenant x0 et V ′ ⊂ Rp ouvert contenant 0. On note

g−1 : V × V ′ → Ω ⊂ Rp × Rn la fonction inverse de la restriction de g à Ω.

Compte tenu de la définition de g, il existe θ : V ×V ′ → Rn de classe C1 tel que

g−1(x, z) = (x, θ(x, z)) pour tout (x, z) ∈ V × V ′.
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Alors pour tous x ∈ Rp, y, z ∈ Rn, on a

{
(x, y) ∈ Ω et f(x, y) = z

}
⇐⇒

{
(x, z) ∈ V × V ′ et g(x, z) = y

}
par définition de l’inverse. On définit alors ϕ : V → Rn en posant ϕ(x) = θ(x, 0)

pour tout x ∈ V , et il est clair que cette fonction vérifie les conclusions du

théorème.

Le théorème dit donc que la surface {f = 0} est localement le graphe d’une

fonction ϕ.

On peut calculer la dérivée / différentielle de la fonction implicite : F
(
x, ϕ(x)

)
≡

0 dans V implique que pour tout i, j

0 = ∂Fi
∂xj

(
x, ϕ(x)

)
+

m∑
l=1

∂Fi
∂yl

(
x, ϕ(x)

)∂ϕl
∂xj

(x),

ou, en forme matricielle,

−dxF
(
x, ϕ(x)

)
= dyF

(
x, ϕ(x)

)
dϕ(x),

d’où

dϕ(x) = −
(
dyF

(
x, ϕ(x)

))−1
dxF

(
x, ϕ(x)

)
.

Si x = x0, on a (x, ϕ(x)) = a et alors

dϕ(x0) = −
(
dyF (a)

)−1
dxF (a).

Il est donc possible de calculer la différentielle de ϕ en a sans connaitre la

fonction ϕ elle-même.

Si f est de classe C(k), 2 6 k 6 ∞, alors ϕ l’est aussi : on le montre par

récurrence à partir de la formule ci-dessus.

Exemple 1.3.2. L’équation u3 − 2u2x + uxy − 2 = 0 définit une fonction

implicite u(x, y) dans un voisinage de (1, 1) avec u(1, 1) = 2, car ∂

∂u
(u3 −

2u2x+uxy− 2) = 3u2− 4ux+xy vaut 5 6= 0 en (1, 1, 2). Les dérivées partielles

de cette fonction sont :

∂u

∂x
(1, 1) = −

(∂F
∂u

(1, 1, 2)
)−1 ∂F

∂x
(1, 1, 2) = −1

5(−2u2 + uy)|(1,1,2) = 6
5 ,

∂u

∂y
(1, 1) = −

(∂F
∂u

(1, 1, 2)
)−1 ∂F

∂y
(1, 1, 2) = −1

5(ux)|(1,1,2) = −2
5 .

On peut donc écrire sa forme approchée, par la formule de Taylor :

u(x, y) = 2 + 6
5(x− 1)− 2

5(y − 1) + o
(
‖(x− 1, y − 1)‖

)
.
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Exercice 1.3.3. 1 Soit f(x, y, z) = z3 − 2z2x + xyz − 2. Montrer que dans

un voisinage de (1, 1, 2) la fonction implicite z = ϕ(x, y) existe. Trouver ses

dérivées partielles et le développement limité du premier ordre en (1, 1).

2 Soit

F (x, y, u, v) =

xu+ yv − u3

x+ y + u+ v

 .

Montrer que dans un voisinage de (1, 0, 1,−2) on peut exprimer (u, v) en tant

que fonction de (x, y).

Écrire sa différentielle en (1, 0).

3 Soit f(x, y, z) = (x2−y2 +z2−1, xyz−1). Supposons que f(x0, y0, z0) =

(0, 0). Montrer qu’il existe un ouvert I de R contenant x0 et une application

ϕ : I → R2 telle que ϕ(x0) = (y0, z0) et f(x, ϕ(x)) = (0, 0) pour tout x ∈ I.

Exemple 1.3.4. Les racines d’un polynôme. Soit P (x) = xn+an−1x
n−1 +

· · ·+a1x+a0 un polynôme à coefficients réels scindé à racines simples. Montrer

qu’il existe un voisinage V de A = (an−1, .., a1, a0) tel que pour tout (αn−1, . . . , α1, α0) ∈

V , le polynôme Qα(x) = xn + αn−1x
n−1 + · · · + α1x + α0 est scindé à racines

simples et ses racines s’expriment comme fonctions C∞ de (αn−1, . . . , α0).

Solution : pour chaque racine xk de P , k = 1, . . . , n, on applique le théorème

de fonctions implicites en (a0, . . . , an−1, xk) à

F (α0, . . . , αn−1, x) = xn + αn−1x
n−1 + · · ·+ α1x+ α0.

Les racines de P sont supposées simples, donc

∂F

∂x
(a0, . . . , an−1, xk) = P ′(xk) 6= 0,

ce qui implique l’existence d’une fonction implicite ϕk dans un voisinage V de

A telle que ϕ(A) = xk, et d’un ouvert Ωk 3 (A, xk) tel que {F = 0} ∩ Ωk =

{(α,ϕk(α)) : α ∈ V }. On peut supposer le voisinage V le même pour tout k ; en

le diminuant si besoin on peut garantir que les ouverts Ωk sont disjoints. Pour

α ∈ V on aura donc F (α,ϕ1(α)) = · · · = F (α,ϕn(α)) = 0, c’est-à-dire, ϕk(α),

k = 1, . . . , n, sont les racines de Qα. Comme il y en a n et elles sont distinctes,

il n’y en a pas d’autres.

Exercice 1.3.5. Application : montrer qu’au voisinage d’une matrice réelle A ∈

Mn(R), possédant n valeurs propres réelles distinctes, les matrices M gardent

n valeurs propres distinctes et que ces dernières peuvent s’exprimer comme des

fonctions C∞ de M .
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1.4 Extréma liés

Théorème 1.4.1. Soit U ⊂ Rn un ouvert, f : U → R, G : U → Rm de classe

C1, m 6 n. Soit M = {x ∈ U : G(x) = 0}. Si a ∈ M est un extrémum local de

f |M et dG(a) a le rang maximal (= m), alors il existent λ1, . . . , λm ∈ R dits les

multiplicateurs de Lagrange tels que

∇f(a) = λ1∇G1(a) + · · ·+ λm∇Gm(a). (1.8)

Démonstration. Si n = m, l’hypothèse dit que dG(a) est inversible, donc les

colonnes de cette matrice engendrent linéairement Rn 3 ∇f(a). On suppose

donc par la suite m < n.

Soit p = rang dG(a). Il existent donc des lignes libres ∇Gik (a), k = 1, . . . , p.

Quitte à changer la numérotation, on peut supposer que ce sont ∇Gk(a), k =

n− p+ 1, . . . , n. Notons dans la suite x = (z, y) ∈ Rn avec z ∈ Rp et y ∈ Rn−p.

Nous sommes dans le hypothèses du théorème de fonction implicite : il existe

un ouvert V contenant z0 = (a1, . . . , an−p), un ouvert Ω ⊂ U contenant a et

une fonction ϕ : V → Ω de classe C1 tels que

M ∩ Ω = {(z, ϕ(z)) : z ∈ V }.

Maintenant la fonction h : V → R, z 7→ f(z, ϕ(z)) admet un extrémum local en

z0, donc sa différentielle est nulle. On calcule

dh(z0) = ∂zf(a) + ∂yf(a)dϕ(z0) = ∂zf(a)− ∂yf(a)
[
∂yG(a)

]−1
∂zG(a) = 0

(ce sont des vecteurs lignes de Rp).

La matrice ∂yG(a) est inversible, ses lignes forment donc une base de Rm,

et il existent λ1, . . . , λm ∈ R tels que

∂yf(a) = λ1∂yG1(a) + · · ·+ λm∂yGm(a) = (λ1, . . . , λm)∂yG(a).

En le mettant dans la formule de dh(z0), on obtient

∂zf(a)− (λ1, . . . , λm)∂yG(a)
[
∂yG(a)

]−1
∂zG(a) = 0,

d’où ∂zf(a) = (λ1, . . . , λm)∂zG(a). On a donc l’égalité en chaque coordonnée,

ce qui vérifie (1.8).

Géométriquement : la surfaceM est orthogonale aux gradients des fonctions

Gi, i = 1, . . . ,m. Si f a un extrémum, sa dérivée «en toute direction sur la

surface» est nulle, donc son gradient y est orthogonal lui aussi, d’où la décom-

position (??).
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En pratique : on obtient n équations, a priori non-linéaires, en n variables

x, paramétrées par λ ∈ Rm.

Exemple 1.4.2. Trouver les extréma de f(x, y) = xy sur le cercle S1 =

{(x, y) ∈ R2 : x2 + y2 = 1}.

On a ∇f(x, y) = (y, x), remarquons donc que f (définie sur R2 \ {(0, 0)})

n’a pas d’extrémum local. Mais sur le compact S1 elle aura bien un maximum

et un minimum ; trouvons-les.

Le cercle est l’ensemble de zéros de g(x, y) = x2+y2−1, à gradient ∇g(x, y) =

(2x, 2y) qui ne s’annule pas sur S1. Dans un extrémum lié il doit exister alors

λ ∈ R tel que ∇f = λ∇g, ce qu’on explicite :y = 2λx,

x = 2λy.

Donc x = 4λ2x. Comme x = 0 implique y = 0 et ne donne pas de points du

cercle, on obtient 4λ2 = 1 et λ = ±1/2. Par conséquence, x = y ou x = −y.

Le premier cas donne deux points ±( 1√
2 ,

1√
2 ), le deuxième deux autres points

±( 1√
2 ,−

1√
2 ).

La valeur de f en ses points est respectivement 1
2 et − 1

2 , ce sont donc deux

maximums et deux minimums.

Exemple 1.4.3. Si dG(a) n’a pas le rang maximal, alors la méthode ne permet

pas toujours de trouver les extrémums, même s’ils existent. Soit g(x, y) = y2−x3,

f(x, y) = (x + 1)2 + y2 = d
(
(x, y), (−1, 0)

)2. La distance entre le point P =

(−1, 0) et un ponit de la courbe y2 = x3 est minimisé évidemment en (x, y) =

(0, 0). Calculons les gradients : ∇f(x, y) = (2(x + 1), 2y), ∇f(0, 0) = (2, 0),

∇g(x, y) = (−3x2, 2y), ∇g(0, 0) = (0, 0). Les hypothèses du théorème de sont

pas vérifiées en ce minimum lié, et la conclusion non plus : un multiplicateur de

Lagrange n’existe pas.

Il faut donc vérifier à part les points où le rang n’est pas maximal.

Exercice 1.4.4. Trouver les extréma de f(x, y, z) = x+ y + z sur l’ellipsoïde

E = {(x, y, z) : x
2

2 + y2

4 + z2

6 = 1}.

Exemple 1.4.5 (Inégalité de Hölder). Soient p, q > 1 des réels conjugués :
1
p + 1

q = 1. Alors pour tout n > 1 et tous réels positifs ak, bk, k = 1, . . . , n on a

n∑
k=1

akbk 6
( n∑
k=1

apk

)1/p( n∑
k=1

bqk

)1/q
.
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L’inégalité est bien sûr nontriviale que dans le cas n > 2, ce qu’on suppose dans

la suite. On suppose aussi A =
(∑n

k=1 a
p
k

)1/p
non-nul, sinon ak = 0 pour tout

k l’inégalité est vérifiée. Quitte à diviser par A, on peut donc supposer A = 1.

On considère alors les bk des paramètres fixes, et on cherche à maximiser

f(a) =
∑
k akbk sous la contrainte g(a) =

∑n
k=1 a

p
k = 1. Les gradients sont :

∇f(a) = (b1, . . . , bn), ∇g(a) = p (ap−1
1 , . . . , ap−1

n ),

et celui de g ne s’annule pas sur la surface en question. Dans les points ex-

trémaux il existe alors λ ∈ R tel que bk = λ p ap−1
k pour tout k. La contrainte

donne
n∑
k=1

apk =
n∑
k=1

[ bk
λp

]p/(p−1)
= (λp)−q

n∑
k=1

bqk = 1,

car p
p−1 = (1 − 1

p )−1 = q. En notant
∑n
k=1 b

q
k = Bq, on obtient λp = B, donc

l’extrémum est unique avec ak =
(
bk

λp

)1/(p−1). La valeur de f en ce point est

f(a) =
n∑
k=1

b
1

p−1 +1
k (λp)−

1
p−1 =

n∑
k=1

b
p

p−1
k B−

1
p−1 = Bq−

1
p−1 = B.

Il reste à montrer que c’est bien un maximum. Si B = 0, alors f est identique-

ment nulle. Sinon, en posant ak = 1, aj = 0 pour j 6= k, on obtient bk 6 B

en tant que les valeurs de f . Or, si bk sont tous égaux à B, vu que n > 2, on

aurait la contradiction nBq = Bq, ce qui montre qu’on a bk < B pour au moins

un indice k, donc B est un maximum. On en déduit f(a) 6 B pour tout a sous

la contrainte A = 1, d’où l’inégalité.

Exercice 1.4.6 (Moyenne arithmétique et moyenne géométrique). Soient (ai)16i6n

des nombres réels positifs. Montrer que

a1 + · · ·+ an
n

> n
√
a1 · · · an.

Exercice 1.4.7. f(x, y) = x + 2y sous la contrainte g(x, y) = x2 + xy + y2 +

y − 13
9 = 0, U = R2.

Exercice 1.4.8. f(x, y, z) = x2 + y2 + z2 sous contrainte
x2

4 + y2 + z2 = 1

x+ y + z = 0

Exercice 1.4.9. f(x, y, z) = (x− 1)2 + (y − 2)2 + (z − 3)2 sous contraintex
2 + y2 + z2 = 21

3x+ 2y + z = 0
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Exercice 1.4.10. Trouvez le volume maximum d’une boite parallélépipédique

rectangle dont la surface est égale à S.

Exercice 1.4.11. Optimiser f(x, y, z) = yz + xy sous les contraintes xy = 1,

y2 + z2 = 1.

Exercice 1.4.12. Minimiser f(x, y, z) = x2 + y2 + z2 si x + y + z = 9 et

x+ 2y + 3z = 20.

1.5 Submersion, immersions

Définition 1.5.1. Soit U ⊂ Rm un ouvert. Une application différentiable f :

U → Rn est dite submersion si le rang de df(x) est n pour tout x ∈ U (il en suit

n 6 m). On dit que f est une immersion si df(x) est injective pour tout x ∈ U

(donc nécessairement n 6 m).

Exemple 1.5.2. Les fonctions suivantes sont-elles des immersions ? des sub-

mersions ?

1. f : R2 → R3, (x, y) 7→ (x, y, 0)

2. f : R3 → R2, (x, y, z) 7→ (y, z)

3. f : R3 → R, (x, y, z) 7→ xy + 2yz + 3xz

4. f : R→ R2, t 7→ (sin(2t), sin(3t))

5. f : R3 → R2, (x, y, z) 7→ (x2 + y2 + z2, xy)

6. f : R2 → R3, (x, y) 7→ (ex, cos y, sin y)

1.6 Sous-variétés de Rn

Les énoncés et les définitions de cette section suivent [2]. Dans la définition

et dans le théorème il faut comprendre «difféomorphisme» et «lisse» dans le

sens «de classe C(k)», où k (qui peut être infini) est le même dans toutes les

assertions. Donc strictement dit, on parle toujours d’une «sous-variété de classe

C(k)» en précisant le k si besoin.

Définition 1.6.1. Une partie M ⊂ Rn est une sous-variété de dimension p de

Rn si pour tout a ∈ M il existe des voisinages ouverts U de a et V de 0 et un

difféomorphisme f : U → V tels que f(U ∩M) = V ∩ (Rp × {0}).

Cette définition n’est pas la plus intuitive dans le cas de Rn, mais elle cor-

respond à la notion générale d’une sous-variété différentielle.
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Exemple 1.6.2. SiM = {(x, y) ∈ R2 : x2+y2 = 1}, sur U = {(x, y) : y > 0} on

peut poser f(x, y) = (x, x2 + y2− 1). On obtient V = {(x, z) ∈ R2 : z > x2− 1},

ce qui se vérifie par exemple en définissant la fonction inverse f−1(x, z) =

(x,
√
z + 1− x2). Ces U, V, f valent pour y > 0 ; pour les autres points de M on

construit des fonctions similaires.

Théorème 1.6.3. Soit M une partie de Rn. Les propriétés suivantes sont équi-

valentes :

1. M est une sous-variété de dimension p de Rn ;

2. Pour tout a ∈ M il existe un ouvert U contenant a et une submersion

g : U → Rn−p (c.à.d. le rang de dg(u) est n − p pour tout u ∈ U) telle

que U ∩M = g−1(0) ;

3. Pour tout a ∈ M il existe une ouvert U contenant a, un ouvert Ω ⊂ Rp

contenant 0 et une application h : Ω → Rn qui est à la fois immersion

(c.à.d. dh(x) est injective pour tout x ∈ Ω) et un homéomorphisme de Ω

sur U ∩M ;

4. Pour tout a ∈ M il existe un ouvert U contenant a, un ouvert V ⊂ Rp

contenant (a1, . . . , ap) et une application lisse G : V → Rn−p tels que,

après permutation éventuelle des coordonnées, U ∩M soit égal au graphe

de G.

Démonstration. On note m = n− p.

1 =⇒ 2 Pour a ∈ M soient U, V, f donnés par (1). On garde l’ouvert

U et on pose g(u) =
(
f (p+1)(u), . . . , f (n)(u)

)
∈ Rm pour u ∈ U . Évidemment

g(u) = 0 si u ∈ U ∩M . Réciproquement, si g(u) = 0, alors f(u) ∈ V ∩ (Rp ×

{0}), donc il existe v ∈ U ∩M tel que f(u) = f(v). Par l’hypothèse f est un

difféomorphisme donc u = v, et on conclut que g−1(0) = U ∩M . La matrice

de dg est constituée par les dernières m colonnes de la matrice de df ; elles sont

donc linéairement indépendantes, ce qui montre que g est bien une submersion.

2 =⇒ 4 Les colonnes de la matrice dg(a) sont ∂g

∂uj
, j = 1, . . . , n. Par

l’hypothèse, parmi ces colonnes il y a m libres. Quitte à permuter les coordon-

nées, on peut admettre que ce sont celles avec j = p+ 1, . . . , n. Pour u ∈ Rn on

note, comme dans le théorème des fonctions implicites, u = (x, y) où x ∈ Rp et

y ∈ Rm. On peut appliquer ce théorème à la fonction g car dyg(a) est inversible,

par le choix des coordonnées y. Il existent alors un ouvert W ⊂ U , un ouvert

V ⊂ Rp et une fonction lisse G : V → Rm tels que W = {(x,G(x)) : x ∈ V }.

4 =⇒ 3 On pose Ω = V et h(x) =
(
x,G(x)

)
. Par l’hypothèse, h(Ω) =

15



U ∩M . La fonction h est continue, son inverse aussi car c’est la projection sur

les premières p coordonnées, donc h est un homéomorphisme. Enfin, dh(x) = Ip

dG(x)

 est évidemment injective de Rp dans Rn.

3 =⇒ 1 Par l’hypothèse, il y a p indépendantes parmi les lignes de la

matrice dh(a). En permutant les coordonnées si nécessaire, on peut admettre

que ce soient le premières p. Soit px la projection sur ces coordonnées. Par

Corollaire, il existent un ouvertW contenant pxa et un ouvert V ⊂ Ω contenant

0 tels que g := pxh : V →W est un difféomorphisme.

On pose f(x, y) = (x, y − pyh(g−1(x)) sur U1 = U ∩ (W × Rm), et on note

V = f(U1). Pour tout v ∈ V on pose x = pxv et y = v+pyh(g−1(x)) pour obtenir

une fonction inverse. Il est évident que f et f−1 sont de classe C(k), f est alors

un difféomorphisme de U1 sur V .Enfin, si (x, y) ∈ U1 ∩M , alors (x, y) = h(z)

avec z ∈ Ω, donc x = g(z) et y = pyh(z) d’où f(x, y) ∈ Rp × {0}.

Exemple 1.6.4. 1 Tout ouvert de Rn est une sous-variété, f = Id dans la

définition. En particulier : GLn(R) dans Rn
2 .

2 M = SLn(R) dans Rn
2 est une sous-variété de dimension n2− 1 : dans

le Théorème (2), poser g(A) = detA − 1. En tout point A, la dérivée partielle
∂g

∂Aij
est le mineur correspondant et il en existe au moins un de non-nul.

3 La sphère Sn est une sous-variété de dimension n dans Rn+1. En (2) du

Théorème, poser g(x) = x1
1 + · · ·+x2

n+1−1. Le gradient dg(x) = 2x est non-nul

en tout x ∈ Sn.

4 Le produit M = M1 × M2 de sous-variétés de Rnj de dimension pj,

j = 1, 2, est une sous-variété de Rn1+n2 de dimension p1 + p2. Dans Théorème

(4), poser U = U1×U2, V = V1×V2 et G(x1, x2) = (G1(x1), G2(x2)). Le même

pour un produit de tout nombre fini de facteurs.

En particulier, le tore Tn = (S1)n est une variété de dimension n (qui peut être

réalisé en tant que sous-variété de R2n, mais éventuellement de Rm avec m plus

petit).

5 On(R) = {A ∈ Mn(R) : AAt = I}, alors On(R) = F−1(0) où F (A) =

AAt − I. On a F (A+H) + I = (A+H)(A+H)t = AAt +AHt +HAt +HHt

donc dF (A)(H) = AHt + HAt. L’image de dF (A) est contenu dans l’espace

des matrices symétriques Symn(R), mais aussi toute matrice symétrique S y

est contenue car on peut poser H = 1
2SA. La dimension de Symn(R) est n +

(n−1)+ · · ·+1 = n(n+ 1)
2 , et s’est le rang de dF (A) pour toute A orthogonale.

Soit P la projection de Mn(R) sur Symn(R) (qui ne garde que les coordonnées
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sur la diagonale et dessus), alors P ◦ F est une submersion. La dimension de

On(R) est donc n2 − n(n+ 1)
2 = n(n− 1)

2 .

À noter, la dimension de SOn(R) = On(R) ∩ det−1(]0,+∞[) est la même.

6 Le cone M = {(x, y, z) ∈ R3 : x2 + y2 − z2 = 0, z > 0} n’est pas une

sous-variété de R3. Supposons, en vue d’une contradiction, qu’il l’est, alors par

(3) du Théorème il existe un ouvert U contenant 0 ∈ M , un ouvert Ω ⊂ R2

contenant 0 (en considérant les autres points de M on obtient nécessairement

p = 2) et une immersion h : Ω → R3 réalisant un homéomorphisme entre Ω et

U ∩M . En particulier, la fonction f : t 7→ h(t, 0), définie dans un intervalle

autour de 0, est dérivable, de dérivée non-nulle car df(0) = dh(0, 0)

1

0

 et

dh(0, 0) est injective. On a donc f(t) ∼ f ′(0)t, t → 0 et ‖f(t)‖ ∼ C|t| avec

C = ‖f ′(0)‖ 6= 0. Au même temps, f3(t) atteint son minimum global en 0, donc

f ′3(0) = 0 et f3(t) = o(t), t→ 0. Les valeurs de f étant dansM , on doit pourtant

avoir f3(t)2 = f1(t)2 +f2(t)2 ce qui implique ‖f(t)‖2 = o(t2), contradiction avec

l’équivalence ‖f(t)‖ ∼ C|t|, C 6= 0, obtenue avant.

1.7 Le plan tangent

Soit M une sous-variété de Rn, qu’on suppose pour simplicité égal à

M = F−1(0) = {x, ϕ(x) : x ∈ V },

où F : U → Rm, m < n, est de classe C1 avec dF (a) de rang m en tout a ∈M ,

et V ⊂ Rp est un ouvert, p = n−m, et ϕ de classe C1.

Soit a ∈ M , et soit γ : [−ε, ε] → M (avec ε > 0) de classe C1, telle que

γ(0) = a. Sa dérivée γ′(0) en 0 est un vecteur de Rn ; on définit TaM comme

l’ensemble de tels vecteurs tangents.

Il faut vérifier que TaM est un sous-espace vectoriel de Rn. Pour le voir, on

se rappelle que γ(t) = (x(t), y(t)) ∈M donc y(t) = ϕ(x(t)) pour tout t, alors

γ′(t) =
(
x′1(t), . . . , x′p(t),

p∑
k=1

∂ϕ1

∂xk
(γ(t))x′k(t), . . . ,

p∑
k=1

∂ϕm
∂xk

(γ(t))x′k(t)
)

= (x′(t), dϕ(γ(t))[x′(t)]),

en particulier, γ′(0) = (x′(0), dϕ(a)[x′(0)]). On peut avoir h ∈ Rp quelconque

en tant que x′(0) : il suffit de poser γ(t) = (x0 + th, ϕ(x0 + th)) si a = (x0, y0).

Donc

TaM = {(h, dϕ(a)[h]) : h ∈ Rp},
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c’est un sous-espace vectoriel de dimension p.

Exemple 1.7.1. Soit ϕ(x, y) =
√
R2 − x2 + y2, alors M est une demi-sphère

(on suppose x2 + y2 < R2). En tout point a = (x, y, z), on calcule

dϕ(x, y) =

−xz
−yz


donc

TaM = {(h, k,−(hx+ ky)/z : h, k ∈ R}.

On peut remarquer que

xh+ yk − (hx+ ky) = 〈(x, y, z), (h, k,−(hx+ ky)/z〉 = 0

pour tout h, k, de sorte que TaM est l’orthogonal de (x, y, z). C’est un fait

général, et c’est vrai puisque (x, y, z) = 1
2∇F , où F (x, y, z) = x2 + y2 + z2−R2

est la fonction telle que M = F−1(0) (restreint sur U = {(x, y, z) : z > 0}).

En général donc : par le théorème des fonctions implicites,

dϕ(x0) = −
(
∂yF (a)

)−1
∂xF (a),

et pour h ∈ Rp et k = 1, . . . ,m on a

〈(h, dϕ(a)[h]),∇Fk(a)〉 =
p∑
j=1

hj
∂Fk
∂xj

(a) +
m∑
j=1

(dϕ(a)[h])j
∂Fk
∂yj

(a);

c’est la ligne k de

dF (a)[h, dϕ(a)[h]] = ∂xF (a)[h]− ∂yF (a)
(
∂yF (a)

)−1
∂xF (a)[h] = 0.

Tout vecteur de TaM est donc orthogonal à chaque ∇Fk(a), k = 1, . . . ,m.

Comme les dimensions de ces espaces sont p et m = n− p respectivement, nous

avons l’égalité

TaM = 〈∇Fk(a), k = 1, . . . ,m〉,

qui donne une description alternative de l’espace tangent.

Exemple 1.7.2. Soit M = SLn(R) = {A ∈ Mn(R) ' Rn
2 : detA = 1}. On a

F (A) = detA− 1, m = 1, et

∂F

∂Aij
(A) = Cij

(les cofacteurs de A). En A = I, on a Cij = δij, donc

TIM = {H ∈Mn(R) :
n∑
i=1

Hii = 0} = {H ∈Mn(R) : TrH = 0}.

On note habituellement cet espace sln(R).
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Chapitre 2

Intégration

2.1 Rapports

228 : Continuité, dérivabilité des fonctions réelles d’une variable

réelle. Exemples et applications. Au delà des définitions et premiers théo-

rèmes, le programme offre de nombreuses pistes aux candidates et candidats

pour élaborer leur plan : recherche d’extrema, utilisations de la continuité uni-

forme, fonctions convexes et leur régularité, approximation par des fonctions

régulières, utilisations des formules de Taylor, liens entre caractère C∞ et ana-

lycité, etc.

Des exemples explicites de fonctions continues et nulle part dérivables, de

fonctions continues et croissantes à dérivée nulle presque partout, de fonctions

C∞ à dérivées en un point prescrites, etc. sont les bienvenus dans cette leçon.

Les candidates et candidats solides peuvent s’intéresser à la dérivabilité des

fonctions monotones ou lipschitziennes ou à celle de l’intégrale indéfinie d’une

fonction intégrable, proposer diverses applications du théorème de Baire (conti-

nuité d’une limite simple de fonctions continues, points de continuité d’une dé-

rivée, généricité des fonctions nulle part dérivables parmi les fonctions continues

ou des fonctions nulle part analytiques parmi les fonctions C∞, etc.)

229 : Fonctions monotones. Fonctions convexes. Exemples et appli-

cations. Les définitions et premières propriétés liées à ces notions doivent bien

sûr être présentées pour pouvoir aborder les questions de limites et de continuité

de ces fonctions et leurs caractérisations à l’aide de leurs dérivées. Il convient

d’illustrer son exposé par de nombreux dessins.

La convexité est une source inépuisable d’inégalités, dans divers domaines

y compris les probabilités. Dans ce même domaine, l’étude des fonctions de
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répartition de variables aléatoires réelles, fonctions croissantes s’il en est, est

une piste intéressante.

Au delà de la dimension 1, les fonctions convexes définies sur une partie

convexe de Rn font partie de cette leçon. La recherche de leurs extrema constitue

une thèmatique riche d’exemples. Les candidates et candidats solides peuvent

s’intéresser à des questions de dérivabilité des fonctions monotones, ou de conti-

nuité des fonctions convexes définies sur un ouvert convexe de Rn.

2.2 Limites inférieures et supérieures

Définition 2.2.1. Soit I ⊂ R un intervalle, f : I → R. Si x0 est contenu dans

I avec un voisinage droit, on dit que

lim
x→x0+

f(x) = `

si

∀ε > 0 ∃δ > 0 : ∀x ∈]x0, x0 + δ[∩ I f(x) < `+ ε;

∀ε > 0 ∀δ > 0 ∃x ∈]x0, x0 + δ[∩ I : f(x) > `− ε.

On définit de façon similaire la limite inférieure à droite et les limites à

gauche.

Exercice 2.2.2. Montrer que

lim
x→x0+

f(x) = inf
δ>0

sup
x0<x<x0+δ

f(x).

Exercice 2.2.3. Montrer qu’on a toujours lim
x→x0+

f(x) 6 lim
x→x0+

f(x).

Exercice 2.2.4. Soit

f(x) =

sin( 1
x ), x 6= 0

0, x = 0.

Trouver les quatre limites de f en 0.

Exercice 2.2.5. Montrer que f admet une limite en x0 si et seulement si

lim
x→x0+

f(x) = lim
x→x0+

f(x) = lim
x→x0−

f(x) = lim
x→x0−

f(x).

Définition 2.2.6. Soit I ⊂ R un intervalle, f : I → R. Si x0 est contenu dans

I avec un voisinage droit, on définit la dérivée supérieure de f à droite :

f̄ ′d(x0) = lim
x→x0+

f(x)− f(x0)
x− x0

.

De façon similaire, sont définies la dérivée inférieure à droite f ′
d
(x0) et les

dérivées à gauche.
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Exercice 2.2.7. Montrer que f admet une dérivée en x0 si et seulement si

f̄ ′d(x0) = f ′
d
(x0) = f̄ ′g(x0) = f ′

g
(x0).

Exercice 2.2.8. Soit g(x) = −f(−x). Montrer que g′
g
(x0) = f ′

d
(x0) et ḡ′d(x0) =

f̄ ′g(x0).

2.3 Fonctions monotones

Exercice 2.3.1. Soit f croissante sur ]a, b[, x0 ∈]a, b[. Montrer que f admet

des limites à droite et à gauche, et

lim
x→x0+

f(x) = inf
x>x0

f(x), lim
x→x0−

f(x) = sup
x<x0

f(x).

Solution : soit `+ = infx>x0 f(x). Pour tout ε > 0 il existe x1 > x0 tel que

f(x1) < `+ + ε. Mais alors f(x) < `+ + ε pour tout x ∈]x0, x1[ ; et au même

temps, évidemment f(x) > `+. On a montré alors que `+ = limx→x0+ f(x).

Pour la limite à gauche la preuve est similaire.

Un fonction monotone f est donc continue en x0 ssi ses limites à droite et à

gauche sont égales. Un point de discontinuité est dit un saut de f .

Exercice 2.3.2. Soit f croissante sur [a, b], et soit S l’ensemble de ses points

de saut. Montrer que S est dénombrable et∑
s∈S

[f(s+)− f(s−)] 6 f(b)− f(a).

Soit f continue sur [a, b]. Disons que x ∈ [a, b] est invisible à droite s’il existe

y ∈]x, b] tel que f(x) < f(y).

Lemme 2.3.3 (de Riesz). Soit f continue sur [a, b]. L’ensemble U des points in-

visible à droite est alors ouvert, et en le représentant U = ∪n]an, bn[ en réunion

d’intervalles disjoints, on a f(an) 6 f(bn) pour tout n.

Démonstration. Si x est invisible à droite, alors par continuité tout point assez

proche de x l’est aussi, alors U est ouvert. Dans la représentation donnée ci-

dessus, supposons que pour un certain n, on a f(an) > f(bn). Il existe alors

x ∈]an, bn[ tel que f(x) > f(bn) ; soit x0 = sup{y ∈ [x, bk] : f(y) = f(x)}. On a

évidemment x0 ∈]an, bn[.

Comme x0 ∈ U , il existe y ∈]x0, b] tel que f(x0) < f(y), et on ne peut pas

avoir y < bn car sinon il existerait z ∈ [y, bn] avec f(z) = f(x0). Mais alors

f(bn) < f(y) et y ∈]bn, b], ce qui implique bn ∈ U ; cela contredit l’hypothèse

que bn est une borne de décomposition de U en composantes disjointes.
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De manière identique, on montre que l’ensemble des points invisibles à

gauche vérifie les conclusions symétriques, avec f(an) > f(bn).

Lemme 2.3.4. Soit I un intervalle ouvert borné, et soit A ⊂ I tel que avec un

certain ρ ∈ ]0, 1[, pour tout [α, β] ⊂ I on a

λ(A∩ ]α, β[) < ρ(β − α).

Alors λ(A) = 0.

Démonstration. La mesure de Lebesgue est régulière, alors pour tout ε > 0 il

existe un ouvert U ⊂ I tel que A ⊂ U et λ(U) < λ(A) + ε. On décompose U =

∪n ]an, bn[ en réunion disjointe. Par l’hypothèse, on a λ(A∩ ]an, bn[) < ρ(bn−an)

pour tout n, d’où

λ(A) 6
∑
n

λ(A∩ ]an, bn[) < ρ
∑
n

(bn − an) = ρλ(U),

donc λ(U) < ρλ(U) + ε d’òu λ(U) < ε/(1 − ρ). On en déduit immédiatement

λ(A) = 0.

Théorème 2.3.5 (Lebesgue). Toute fonction monotone sur un intervalle est

dérivable presque partout.

Démonstration. Introduisons les notations : I ⊂ R un intervalle, f : I → R.

Sans perte de généralité nous pouvons supposer f croissante et I = [a, b], a < b.

Nous allons montrer que presque partout

(1) f̄ ′d(x) <∞, (2) f ′
g
(x) > f̄ ′d(x). (2.1)

1 Soit Isup,d = {x ∈ I : f̄ ′d(x) =∞}. Supposons que x0 ∈ Isup,d. Alors

inf
δ>0

sup
x0<x<x0+δ

f(x)− f(x0)
x− x0

= +∞,

et pour tout C > 0 il existe x > x0 dans I tel que f(x)− f(x0)
x− x0

> C, d’où

f(x)−Cx > f(x0)−Cx0. Le point x0 est donc invisible à droite pour la fonction

g(x) = f(x)−Cx. Par le lemme de Riesz, l’ensemble U de tels points est ouvert

et se décompose en réunion disjointe U = ∪n]an, bn[ telle que g(an) 6 g(bn)

pour tout n. On a donc f(an)− Can 6 f(bn)− Cbn et∑
n

(bn − an) 6
∑
n

f(bn)− f(an)
C

6
f(b)− f(a)

C
.
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La mesure de Isup,d ⊂ U est donc majorée par f(b)−f(a)
C , avec C > 0 arbitraire ;

cela montre que sa mesure est nulle.

2 Notons Iig<sd = {x : f ′
g
(x) < f̄ ′d(x)}. Si x0 ∈ Iig<sd, alors il existent

C1, C2 tels que

f ′
g
(x0) < C1 < C2 < f̄ ′d(x0). (2.2)

On appliquera le lemme de Riesz deux fois sur des sous-intervalles.

Soit [α, β] ⊂ I, et supposons que x0 ∈ Iig<sd∩ ]α, β[. Par (2.2), on trouve

x < x0 tel que x > α et
f(x)− f(x0)

x− x0
< C1,

d’où f(x)−f(x0) > C1(x−x0). Ceci implique que x0 est invisible à gauche pour

g(x) = f(x)−C1x. Par le lemme de Riesz (sur ]α, β[), on décompose l’ensemble

de tels points Ug = ∪n]an, bn[, en obtenant g(an) = f(an) − C1an > g(bn) =

f(bn)− C1bn donc ∑
n

(bn − an) >
∑
n

f(bn)− f(an)
C1

.

Revenons à Iig<sd. Pour x0 ∈ Iig<sd∩ ]α, β[⊂ Ug, soit n tel que x0 ∈]an, bn[.

Par (2.2), on trouve x > x0 qu’on peut choisir dans ]an, bn[ tel que

f(x)− f(x0)
x− x0

> C2,

donc f(x)− f(x0) > C2(x− x0) et x0 est invisible à droite pour h(x) = f(x)−

C2x, sur l’intervalle ]an, bn[. On applique le lemme de Riesz comme dans la

partie (1), en obtenant∑
k

(bkn − akn) 6
∑
k

f(bkn)− f(akn)
C2

6
f(bn)− f(an)

C2
.

Mais alors, en notant ρ = C1
C2

,

λ
(
Iig<sd∩ ]α, β[

)
6
∑
n

f(bn)− f(an)
C2

6
C1

C2

∑
n

(bn − an) 6 ρ(β − α).

Lemme 2.3.4 implique maintenant que λ(Iig<sd) = 0.

3 En appliquant le résultat obtenu (2.1) à g(x) = −f(−x), nous obtenons

que presque partout

g′
g
(x) = f ′

d
(x) > ḡ′d(x) = f̄ ′g(x),

donc presque partout, avec (2.1),

f ′
g
(x) 6 f̄ ′g(x) 6 f ′

d
(x) 6 f̄ ′d(x) 6 f ′

g
(x),

ce qui montre que ces quatre nombres sont égaux et f est dérivable en x.
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La dérivée peut parfois surprendre :

Exercice 2.3.6. Montrer que l’escalier de Cantor a presque partout la dérivée

nulle.

Corollaire 2.3.7. Soit f Lebesgue intégrable sur [a, b], et soit F (x) =
∫ x
a
f(t)dt

son intégrale indéfinie. Alors F est presque partout dérivable.

2.4 La dérivée de l’intégrale

Soit f intégrable sur [a, b]. On peut définir son intégrale indéfinie qui est une

fonction F sur [a, b] :

F (x) =
∫ x

a

fdλ.

On ne peut pas s’attendre à ce que F soit dérivable partout : il suffit de consi-

dérer [a, b] = [−1, 1] et

f(x) =

1, x > 0

0, x < 0.

Mais on verra que F est dérivable presque partout.

Il est clair que F est la différence de deux fonctions monotones :

F (x) =
∫ x

a

f+dλ−
∫ x

a

f−dλ.

Théorème 2.4.1. Soit f intégrable sur [a, b], et soit F son intégrale

indéfinie. Alors F ′ existe presque partout et F ′ =
p.p.

f .

Démonstration. L’existence presque partout suit du théorème de Lebesgue, et le

reste de la preuve est pour montrer l’égalité F ′ =
p.p.

f . On va démontrer d’abord

que f >
p.p.

F ′.

Si x est tel que f(x) < F ′(x), alors ils existent q, r ∈ Q tels que f(x) < q <

r < F ′(x). Soit

Eq,r = {x : f(x) < q < r < F ′(x)}.

On vérifie qu’en fait, l’ensemble E = {x : f(x) < F ′(x)} est la réunion

E = ∪
q,r∈Q

Eq,r.

Le but est de montrer que λ(Eq,r) = 0 pour tout q, r ; comme la réunion est

dénombrable, il en suivra λ(E) = 0 et donc f >
p.p.

F ′.
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Avec q, r fixes, on peut ajouter une constante à f — ce qui ajoute la même

constante à F ′ — et admettre q > 0.

Fixons ε > 0. Par la continuité absolue, il existe δ > 0 tel que |
∫
I
fdλ| < ε

pour tout intervalle I de longueur |I| = λ(I) < δ. On peut choisir δ < ε/r. Par

la construction de la mesure de Lebesgue (à rappeler, la mesure extérieure est

la borne inférieure par des recouvrements par des intervalles, et ceux-là on peut

choisir ouverts) il existe un ouvert V tel que Eqr ⊂ V et λ(V ) < λ(Eqr) + δ.

Comme F ′(x) > r pour x ∈ Eqr, il existe un voisinage assez petit ]ax, bx[ de

x (qu’on peut supposer contenu dans V ) tel que dans ce voisinage,

F (y)− F (x)
y − x

> r. (2.3)

Si on note G(y) = F (y)− ry, on remarque, en transformant (2.3), que

G(y) > G(x) si y > x et G(y) < G(x) si y < x, (2.4)

pour y ∈ ]ax, bx[.

Le point x est donc invisible à droite pour G. Soit U l’ensemble des points

invisibles à droite pour G, et soit U = ∪
n

]αn, βn[ sa décomposition en réunion

dénombrable d’intervalles ouverts disjoints. Par le lemme de Riesz, on aG(αn) 6

G(βn) pour tout n, et on rappelle que Eqr ⊂ U .

L’inégalité obtenue G(αn) 6 G(βn)

est équivalente à

F (βn)− F (αn) > r(βn − αn)

pour tout n.

On aura alors :∫
U

fdλ =
∞∑
k=0

∫ βk

αk

fdλ =
∞∑
k=0

[F (βk)− F (αk)] > r

∞∑
k=0

(βk − αk) = rλ(U),

et au même temps∫
U

fdλ =
∫
Eqr

fdλ+
∫
U\Eqr

fdλ < qλ(Eqr) + ε

car λ(U \Eqr) 6 λ(V \Eqr) < δ. On obtient qλ(Eqr) + ε > rλ(U) > rλ(Eqr), et

λ(Eqr) <
ε

r − q
.

En choisissant ε arbitrairement petit, on montre alors que λ(Eqr) = 0. Cela

implique f >
p.p.

F ′(x).

En passant à −f et donc à −F , on montre que −f >
p.p.
−F ′(x) et f 6

p.p.
F ′(x),

ce qui termine la preuve.

(fin du cours 5)
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2.5 Continuité absolue et l’intégrale indéfinie

Théorème 2.5.1 (Continuité absolue de l’intégrale). Soit f intégrable sur X.

Alors pour tout ε > 0 il existe δ > 0 tel que si µ(A) < δ, alors∣∣ ∫
A

fdµ
∣∣ 6 ∫

A

|f |dµ < ε.

Démonstration. En utilisant l’inégalité
∣∣ ∫ fdµ∣∣ 6 ∫ |f |dµ, on peut supposer f

positive. Selon la définition de l’intégrale, il existe une fonction étagée g telle

que 0 6 g 6 f et ∫
X

gdµ >

∫
X

fdµ− ε

2 ,

alors

0 6
∫
X

(f − g)dµ < ε

2 .

On peut supposer f non-nulle (sinon l’assertion est triviale), alors on pourra

toujours choisir g non-nulle. Comme g est bornée, pour tout A ∈ F∫
A

gdµ 6 µ(A)‖g‖∞ 6= 0.

On pose δ = ε

2‖g‖∞
, alors pour tout ensemble A de mesure µ(A) < δ on obtient

0 6
∫
A

fdµ =
∫
A

gdµ+
∫
A

(f − g)dµ < µ(A)‖g‖∞ + ε

2 < ε.

Définition 2.5.2. Soit (X,F , µ) un espace mesuré. Une autre mesure

ν sur (X,F) est dite absolument continue par rapport à µ si µ(A) = 0

implique ν(A) = 0. Notation : ν � µ.

Exercice 2.5.3. Soit µ et ν des mesures finies sur (X,F) telles que ν � µ.

Montrer que pour tout ε > 0 il existe δ > 0 tel que µ(A) < δ implique ν(A) < ε.

[On suppose le contraire et on choisit An ∈ F tels que µ(An) < 2−n, ν(An) >

ε0 > 0 pour tout n. En posant Bn = ∪k>nAk, on obtient une suite décroissante

(Bn) de mesure µ(Bn) 6 21−n, tant que ν(Bn) > ν(An) > ε0. Pour B = ∩nBn
on aura alors µ(B) = 0 mais ν(B) > ε0 par continuité, ce qui contredit la

continuité absolue.]

Ce résultat n’est pas vrai si les mesures ne sont pas finies : sur X = R+,

considérer ν(A) =
∫
A

1
xdx (par rapport à la mesure de Lebesgue).

Remarque 2.5.4. Toute mesure à densité est évidemment absolument continue

par rapport à µ. On peut montrer la reciproque : si ν est absolument continue,
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alors il existe f telle que ν = µf est une mesure à densité f . Ce résultat s’appelle

le théorème de Radon-Nikodym (donné plus tard).

Cette notion est liée à la classe suivante de fonctions :

Définition 2.5.5. On dit que F : [a, b]→ R est absolument continue si

pour tout ε > 0 il existe δ > 0 tel que pour toute famille d’intervalles

disjoints tk(ak, bk) ⊂ [a, b]∑
k

(bk − ak) < δ implique
∑
k

|F (bk)− F (ak)| < ε.

Remarque 2.5.6. Toute fonction absolument continue est continue en tout

point x ∈ [a, b] : si ε, δ sont comme dans la définition et |y − x| < δ, alors

|F (y)− F (x)| < ε.

[Toute fonction absolument continue est à variation bornée.]

Proposition 2.5.7. Si F est l’intégrale indéfinie d’une fonction f intégrable

sur [a, b], alors F est absolument continue.

Démonstration. Suit directement du Théorème 2.5.1 : en posant I = tk(ak, bk),

on a λ(I) =
∑
k

(bk − ak) < δ, alors

∑
k

|F (bk)− F (ak)| =
∑
k

∣∣∣ ∫ bk

a

fdλ−
∫ ak

a

fdλ
∣∣∣

=
∑
k

∣∣∣ ∫
[ak,bk]

fdλ
∣∣∣ 6∑

k

∫
[ak,bk]

|f |dλ =
∫
I

|f |dλ < ε.

Exercice 2.5.8. Montrer que toute fonction lipschitzienne est absolument conti-

nue.

Exercice 2.5.9. Montrer que la fonction hölderienne xα, 0 < α, est absolument

continue sur [0, 1].

Exercice 2.5.10. Montrer que l’escalier de Cantor (a) n’est pas absolument

continu ; (b) vérifie la condition de Höldér avec α = ln 2
ln 3 .

2.6 Théorème fondamental de l’analyse

On appelle ainsi la formule de Newton–Leibnitz :

F (b)− F (a) =
∫ b

a

F ′(x)dx.
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Il faut préciser que même dans le sens de Lebesgue, l’égalité n’est pas toujours

vérifié : pour l’«escalier de Cantor» F où on a F (1) − F (0) = 1 mais F ′ =
p.p.

0.

On verra que la formule est vraie pour les fonctions absolument continues ; et

que c’est exactement la classe des intégrales indéfinies de fonctions intégrables.

Théorème 2.6.1. Si F est absolument continue sur [a, b], alors elle est presque

partout dérivable et

F (b)− F (a) =
∫ b

a

F ′(x)dx.

Suivra directement du théorème de Radon-Nikodym.

Pour le moment, on démontre le cas particulier suivant :

Théorème 2.6.2. Si F est continue et dérivable sur [a, b], avec la dérivée

F ′ bornée sur [a, b], alors F ′ est intégrable et

F (b)− F (a) =
∫ b

a

F ′(x)dx.

Démonstration. On peut prolonger F sur [b, b+ 1] en posant F (x+ b) = F (b) +

F ′(b)x. Pour n ∈ N, n > 0, on peut alors définir sur [a, b] les fonctions

Fn(x) =
F (x+ 1

n )− F (x)
1/n = n

[
F (x+ 1

n
)− F (x)

]
,

x ∈ [a, b]. Par l’hypothèse, Fn → F ′ sur [a, b]. Il en suit déjà que F ′ est mesu-

rable, et en étant bornée elle est intégrable. Par le théorème d’accroissement finis

pour chaque x ∈ [a, b] et chaque n il existe y ∈ [x, x+ 1
n ] tel que Fn(x) = F ′(y),

donc

|Fn(x)| 6 C = sup{|F ′(x)| : x ∈ [a, b]}.

Par le théorème de convergence dominée,∫ b

a

F ′dλ = lim
n→∞

∫ b

a

Fndλ = lim
n→∞

∫ b

a

n
[
F (x+ 1

n
)− F (x)

]
dλ(x) =

= lim
n→∞

n
[ ∫ b+1/n

b

Fdλ−
∫ a+1/n

a

Fdλ
]

(On peut faire le changement de variable x 7→ x − 1/n car les fonctions sous

les intégrales sont continues, alors on peut calculer les intégrales au sens de

Riemann.) Encore par le théorème d’accroissement finis mais appliqué à l’inté-

grale indéfinie de F , ces dernières intégrales sont égales à F (bn)/n et F (an)/n

respectivement, où bn ∈ [b, b+ 1/n] et an ∈ [a, a+ 1/n]. On conclut que∫ b

a

F ′dλ = lim
n→∞

[
F (bn)− F (an)

]
= F (b)− F (a).
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2.7 Décomposition de Hahn

Définition 2.7.1. Soit (X,F) un espace mesurable. On appelle une mesure à

valeurs réelles toute application µ : F → R σ-additive telle que µ(∅) = 0.

On dit que A ∈ F est positif pour µ si µ(A ∩ B) > 0 pour tout B ∈ F ;

autrement dit, si µ|A est une mesure positive. De la même façon on définit des

parties négatives.

Exercice 2.7.2. Montrer qu’on a toujours

sup{|µ(A)| : A ∈ F} <∞.

Théorème 2.7.3 (Décomposition de Hahn). Soit (X,F) un espace mesurable

et µ une mesure à valeurs réelles sur (X,F). Il existe alors A+ ∈ F tel que A+

est positif pour µ et A− = X \A+ est négatif.

Démonstration. L’ensemble vide est considéré négatif pour µ ; soit

m = inf{µ(A) : A est négatif pour µ}.

On choisit une suite d’ensembles (An) ⊂ F telle que µ(An)→ m, n→∞, et on

pose pour chaque n

A′n = ∪k6nAk.

On vérifie que A′n est négatif, et alors

m 6 µ(A′n) = µ(An) + µ(A′n \An) 6 µ(An),

d’où µ(A′n)→ m. On pose A = ∪nA′n = ∪nAn. On a alors

µ(A−) = µ
(
A′0∪∪n(A′n+1 \A′n)

)
= µ(A′0)+

∑
n

µ(A′n+1 \A′n) = lim
n
µ(A′n) = m.

L’ensemble A− est négatif : pour B ∈ F

µ(A− ∩B) = µ(A′0 ∩B) +
∑
n

µ(A′n+1 ∩ (B \A′n)) 6 0.

Montrons maintenant que A+ = X \A− est positif.

Si ce n’est pas le cas, alors il existe B ⊂ A+ tel que µ(B) < 0. Si l’ensemble

B était négatif, alors C = A− ∪ B le serait aussi, avec µ(C) < m, ce qui est

impossible. Il en suit que B n’est pas négatif. Pour les mêmes raisons, aucune

de ses parties à mesure négative n’est pas négative.

Comme 0 < M = sup{µ(C) : C ⊂ B} < ∞, il existe B1 ⊂ B tel que

µ(B1) > M − ε1, où ε1 = min(1,M/2). On définit ensuite M1 = sup{µ(C) :
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C ⊂ B \ B1} < ∞ et on choisit B2 ⊂ B \ B1 tel que µ(B2) > M1 − ε2, avec

ε2 = min(1/2,M1/2) > 0. En continuant ainsi, on obtient une suite (Bn) de

parties disjointes de B, telles que pour tout n, on a µ(Bn+1) > Mn − εn, où

Mn = sup{µ(A) : A ⊂ B \ ∪k6nBk} > 0

et εn = min(1/2n,Mn/2). On pose C = B \ ∪nBn. Pour tout A ⊂ C on doit

avoir µ(A) 6 0, sinon il existerait n ∈ N tel que µ(A) > 1/2n ; mais alors

A ∩Bn+1 = ∅, A ∪Bn+1 ⊂ B \ ∪k6nBk et

µ(A ∪Bn+1) = µ(A) + µ(Bn+1) > 1
2n +Mn − εn >Mn,

ce qui est une contradiction. L’ensemble C est donc négatif ; mais dans ce cas,

C ∪A− est négatif, avec

µ(C ∪A−) = m+ µ(C) = m+ µ(B)−
∑
n

µ(Bn) < m+ µ(B) < m,

ce qui est une contradiction encore. On conclut que A+ est positif.

Corollaire 2.7.4. Soit (X,F) un espace mesurable et µ une mesure à valeurs

réelles sur (X,F). Il existent alors deux mesures positives µ+, µ− sur (X,F)

telles que µ = µ+ − µ−.

Démonstration. Pour A ∈ F , on pose µ+(A) = µ(A ∩ A+) et µ−(A) = µ(A ∩

A−).

2.8 Théorème de Radon-Nikodym

Définition 2.8.1. Soit (X,F , µ) un espace mesuré et ν une mesure sur (X,F).

On dit que ν est absolument continue par rapport à µ, noté ν � µ, si µ(A) = 0

implique ν(A) = 0.

Théorème 2.8.2. Soit (X,F , µ) un espace mesuré et ν une mesure finie abso-

lument continue par rapport à µ. Alors il existe f : X → R mesurable positive

telle que pour tout A ∈ F

ν(A) =
∫
A

fdµ.

La fonction f est unique (à l’égalité presque partout près) ; on l’appelle la dérivée

de Radon-Nikodym de ν par rapport à µ.

Démonstration. Notons

E = {g : X → R+ mesurable :
∫
A

gdµ 6 ν(A) ∀A ∈ F}.
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On a évidemment 0 ∈ E et
∫
X
gdµ 6 ν(X) pour toute g ∈ E. Soit

M = sup
{∫

X

gdµ : g ∈ E
}
.

On choisit une suite (gn) ⊂ E telle que
∫
X
gndµ → M . En passant à fn =

max(g1, . . . , gn), on obtient une suite croissante ; montrons que fn ∈ E. Pour

A ∈ F et 1 6 k 6 n, soit Ak = {x ∈ A : fn = gk}. Ces ensembles sont

mesurables, et ∫
A

fndµ =
∑
k

∫
Ak

gkdµ 6
∑
k

ν(Ak) = ν(A),

donc on a bien fn ∈ E. Notons f = supn fn = limn fn : ce sera la fonction

recherchée. Par le lemme de Beppo Lévi on a pour tout A ∈ F∫
A

fdµ = lim
∫
A

fndµ 6 ν(A),

donc f ∈ E ; et en particulier,
∫
X
fdµ = M .

Montrons maintenant que
∫
A
fdµ = ν(A) pour tout A ∈ F , en supposant le

contraire : il existe A0 ∈ F tel que∫
A0

fdµ < ν(A0);

l’inégalité opposée est impossible car f ∈ E.

La mesure ν′ : A 7→ ν(A) −
∫
A
fdµ est nonnégative, absolument continue

par rapport à µ et ν′(A0) > 0.

Pour tout n, la mesure à valeurs réelles νn = ν′ − µ/n admet une décom-

position de Hahn ; soit A+
n son ensemble maximal positif, et soit A+ = ∪nA+

n .

Si µ(A+
n ) = 0 pour tout n, alors µ(A+) = 0 d’où ν′(A+) = 0 ; dans ce cas on

aurait ν′(A0 ∩A+) 6 ν′(A+) = 0 et νn(A0 \A+) 6 0, donc

ν′(A0 \A+) 6 1
n
µ(A0 \A+)

pour tout n, d’où ν′(A0 \A+) = 0 et ν′(A0) = 0 contrairement au choix de A0.

Il existe donc n tel que µ(A+
n ) > 0. Posons h = f + 1

nIA+
n
. Pour tout A ∈ F

on a

0 6 νn(A ∩A+
n ) = ν′(A ∩A+

n )− 1
n
µ(A ∩A+

n ),

donc ∫
A

hdµ =
∫
A

fdµ+ 1
n
µ(A ∩A+

n ) 6
∫
A

fdµ+ ν′(A ∩A+
n )

6
∫
A

fdµ+ ν′(A) = ν(A).
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La fonction h est donc dans E, mais

íntXhdµ =
∫
X

fdµ+ 1
n
µ(A+

n ) > M,

contrairement au choix de f .

L’existence de A0 est donc impossible, et nous avons pour tout A l’égalité

recherchée.

Démonstration. Supposons µ finie et posons λ = µ + ν. On a ν 6 λ donc

f 7→
∫
X
fdν est une fonctionnelle linéaire bornée sur L2(X,λ) :∣∣∣ ∫

X

fdν
∣∣∣ 6 ∫

X

|f |dν 6
∫
X

|f |dλ 6 λ(X)1/2‖f‖2,λ.

Par le théorème de Riesz, il existe g ∈ L2(X,λ) telle que
∫
fdν =

∫
fgdλ pour

toute f ∈ L2(λ), donc ∫
f(1− g)dν =

∫
fgdµ.

Soit A0 = {x ∈ X : g(x) < 0 et A1 = {x ∈ X : g(x) > 1}. En posant f = IAj ,

on obtient :

ν(A0) 6
∫
A0

(1− g)dν =
∫
A0

gdµ 6 0

d’où ν(A0) = 0, mais alors de la même inégalité µ(A0) = 0. Ensuite,

0 >
∫
A1

(1− g)dν =
∫
A1

gdµ > µ(A1)

d’où µ(A1) = 0 et alors ν(A1) = 0. Il en suit 0 6 g < 1 l-presque partout, et la

changeant si nécessaire, on peut avoir 0 6 g < 1 partout. On pose ϕ = g

1− g et

on a pour tout A∫
A

ϕdµ =
∫
X

IA
g

1− g dµ =
∫
X

IAdν = ν(A),

car IA ∈ L2(λ) (toutes les mesures sont finies).

2.9 La dualité des Lp

On suppose fixé un espace mesuré (X,F , µ). On fixe ensuite p, q ∈ [1,+∞]

conjugués : 1
p

+ 1
q

= 1.

Rappelons que si µ(A) <∞, alors Lp(A,µ) ⊂ L1(A,µ).

Lemme 2.9.1. Pour g ∈ Lq(X), soit ϕg : Lp(X)→ C défini par

ϕg(f) =
∫
X

fgdµ.

Alors ϕg est bien défini, linéaire, et bornée de norme ‖ϕg‖ = ‖g‖q.
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Démonstration. Le fait que l’intégrale converge et est bornée par ‖f‖p‖g‖q est

l’inégalité de Hölder qu’on suppose connue (et qui ne nécessite aucune hypothèse

particulière sur µ).

Par définition de l’intégrale, il existe une suite (gn) croissante de fonctions

étagées telles que 0 6 gn 6 |g|q et

‖g‖qq =
∫
X

|g|qdµ = lim
n→∞

∫
X

gndµ.

En posant fn = g
1/p
n , on obtient fn ∈ Lp(X) de norme ‖fn‖pp =

∫
X
gndµ, et

(comme |g| > g
1/q
n ) ∫

X

fngdµ >
∫
X

g1/q
n g1/p

n dµ =
∫
X

gndµ,

d’où
|ϕg(fn)|
‖fn‖p

>
(∫

X

gndµ
)1−1/p

→ ‖g‖q, n→∞,

ce qui montre l’égalité ‖ϕg‖ = ‖g‖q.

Lemme 2.9.2. Supposons que µ est σ-finie. Soit g : X → C mesurable, et telle

que pour tout f ∈ Lp(µ), on a fg ∈ L1(µ), et il existe une constante C > 0 telle

que pour tout f ∈ Lp(µ) ∣∣∣ ∫
X

fgdµ
∣∣∣ 6 C‖f‖p.

Alors g ∈ Lq(µ) et ‖g‖q 6 C.

Démonstration. Soit ϕ : X → C «l’argument de g» :

ϕ(x) =


|g(x)|
g(x) , g(x) 6= 0,

1, g(x) = 0.

C’est une fonction mesurable, |ϕ| = 1 et ϕg = |g|. Si f ∈ Lp(X), alors fϕ ∈

Lp(X) et ∣∣∣ ∫
X

fϕgdµ
∣∣∣ 6 C‖fϕ‖p = C‖f‖p,

d’où l’on voit que l’hypothèse vaut aussi pour |g|, et on note que g ∈ Lq(X) ssi

|g| ∈ Lq(X). On supposera alors dans la suite g > 0.

Supposons aussi p > 1. Soit gn → g une suite croissante de fonctions étagées

telle que 0 6 gn 6 g. Pour tout A ∈ F de mesure finie, on pose fn = IAg
q−1
n ,

alors fn est bornée donc dans Lp(A) et, comme p(q − 1) = pq/p = q,

0 6
∫
A

fngndµ =
∫
A

gqndµ 6
∫
A

fngdµ 6 C‖fn‖p = C
(∫

A

gqndµ
)1/p

,

d’où
( ∫

A
gqndµ

)1−1/p
= ‖gnIA‖q 6 C. Il en suit tout de suite que ‖gIA‖q 6 C,

et par définition de l’intégrale, ‖g‖q 6 C.
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[Rappel : µ est σ-finie, donc il existe une suite croissante (Xm) de parties

de X de mesure finie telle que X = ∪mXm ; par définition, g ∈ Lq(X) si

g ∈ Lq(Xm) pour tout m, et ‖g‖q = supm ‖gIXm
‖q.]

Soit enfin p = 1 et q = ∞. On pose A = {x ∈ X : g(x) > C}. Si µ(A) > 0,

on peut trouver (encore utilisant le fait que µ est σ-finie) B ⊂ A de mesure finie

tel que µ(B) > 0 ; pour f = IB on a par l’hypothèse

0 6
∫
X

fgdµ =
∫
B

gdµ 6 Cµ(B),

mais directement on obtient
∫
B
gdµ > Cµ(B). Cette contradiction montre que

µ(A) = 0.

Théorème 2.9.3. Supposons que µ est σ-finie. L’application g 7→ ϕg, Lq(X)→

Lp(X)∗, est une isométrie bijective.

Démonstration. Isométrie étant déjà démontrée, il nous faut montrer que pour

ϕ ∈ Lp(X)∗ il existe g ∈ Lq(X) telle que ϕ = ϕg.

Supposons d’abord que µ est finie. On passe par les mesures : pour E ∈ F on

pose ν(E) = ϕ(IE) ; c’est bien défini car µ est finie et IE ∈ Lp(X). On obtient

une mesure à valeurs réelles (pas nécessairement positive) ν, qui est absolument

continue par rapport à µ : si µ(E) = 0 alors IE = 0 dans Lp(X), donc ν(E) = 0.

Elle est σ-additive : si E = ∪nEn et les En ∈ F sont disjoints, alors la série∑
n IEn converge en norme ‖ · ‖p : pour tout N ∈ N

‖IE −
N∑
n=1

IEn
‖p = µ

(
E \ ∪Nn=1En

)1/p
→ 0, n→∞.

Il en suit

ν(E) = ϕ(IE) = lim
N→∞

ϕ
( N∑
n=1

IEn

)
=
∑
n

ν(En).

Par le théorème de Radon-Nikodym, il existe g ∈ L1(µ), la densité de ν par

rapport à µ, telle que ν(E) =
∫
X
gdµ =

∫
X
IE g dµ pour tout E ∈ F . L’égalité

ϕ(f) =
∫
X
fg étant vérifiée pour toutes les indicatrices, elle vaut par linéarité

pour toutes les fonctions étagées donc par continuité sur Lp(X) tout entier, et

nous avons bien ϕ = ϕg. Par le lemme, g ∈ Lq(µ).

Soit maintenant µ σ-finie, et X = ∪mXm où la suite (Xm) est croissante et

chaque Xm de mesure finie. Pour chaque m, on peut identifier Lp(Xm, µ) avec

l’espace des fonctions dans Lp(X) qui s’annulent hors Xm. La restriction de ϕ

sur cet espace est alors de forme f 7→
∫
Xm

fgmdµ avec gm ∈ Lq(Xm) ⊂ Lq(X)

de norme ‖gm‖q 6 ‖ϕ‖. Si m < l, les fonctionnelles ϕgm
= ϕgl

= ϕ sur Lp(Xm)
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sont les mêmes, donc gm = gl presque partout. L’ensemble

A = ∪m,l{x ∈ X : gm(x) 6= gl(x)}

est de mesure nulle, alors on peut définir la fonction g : X → C en posant

g = gm sur Xm \A et g = 0 sur A, pour obtenir ϕg = ϕgm
sur chaque Lp(Xm).

Par construction, g ∈ Lq(X) et ‖g‖q 6 ‖ϕ‖. Enfin, si f ∈ Lp(X), alors∫
X

fgdµ = lim
m

∫
Xm

fgdµ = lim
m
ϕ(fIXm) = ϕ(f).

Corollaire 2.9.4. Les espaces Lp(X) sont réflexifs si 1 < p <∞ (et µ σ-finie).

Exemple 2.9.5. Sur `∞ ≡ `∞(N), il existe une fonctionnelle ϕ qui n’a pas la

forme ϕy avec aucun y ∈ `1. Sur l’espace c ⊂ `∞ des suites convergentes, on pose

ϕ(x) = lim xn ; on le prolonge par Hahn-Banach. Si on avait ϕ(x) =
∑
xnyn

avec y ∈ `1, on aurait yn = ϕ(en) = 0 pour toute indicatrice en du singleton

{n} ; mais alors y = 0 tant que ϕ 6= 0.

Exemple 2.9.6. En plongeant `∞ isométriquement dans L∞(R) par

F (x)(t) =

1, t ∈ [n, n+ 1[, n ∈ N

0, t < 0

pour x ∈ `∞, on peut définir une fonctionnelle ψ(f) = ϕ(F−1f) sur F (`∞),

de norme 1, et la prolonger sur L∞(R) par Hahn-Banach. Si ce prolongement

étant l’intégrale avec une fonction g ∈ L1(R), on aurait pour tout n∫ n+1

n

g = ψ(I[n,n+1[) = ϕ(en) = 0,

mais ∫ ∞
0

g = ψ(I[0<+∞[) = ϕ(1) = 1,

ce qui est impossible.

Exemple 2.9.7. Si µ n’est pas σ-finie, l’assertion reste vraie pour 1 < p <∞.

Si p = 1, fixons d’abord un exemple d’une mesure non-σ-finie : X = R, µ la

mesure de comptage (qui est infinie sur toutes les parties infinies),

F = {A ⊂ R : A ou R \A est dénombrable}.

Soit B ⊂ R non-dénombrable de complément R\B non-dénombrable (par exemple,

B = [0, 1]), et soit ϕ ∈ L1(R, µ)∗ définie par

ϕ(f) =
∑
x∈B

f(x), f ∈ L1(R, µ).
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Alors ϕ est bien définie, linéaire, et bornée de norme 1. Pourtant, si on avait

ϕ = ϕg avec g ∈ L∞(µ), on aurait du avoir g = IB, ce qui la fait non-mesurable.
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