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Chapitre 1

Eléments de la géométrie

différentielle

1.1 Rapports

Les lecons concernées (2025) sont :

214 Théoréme d’inversion locale, théoreme des fonctions implicites. Illus-
trations en analyse et en géométrie.
Rapport 2024 : Les deux théoréemes fondamentaux auxquels cette legon
est consacrée offrent une belle utilisation de la complétude, qu’il convien-
dra d’évoquer. La démonstration de 'un de ces deux théoremes peut
parfaitement faire 'objet d’un des deux développements. On pourra par
exemple mettre en pratique, sur des exemples bien choisis, le théoreme
des fonctions implicites au moins dans le cas de deux variables réelles,
pour enrichir le plan avec profit.
Des applications significatives aussi bien en analyse qu’en géométrie sont
attendues : problémes d’optimisation sous contraintes (inégalité de Hol-
der, inégalité d’Hadamard, etc), régularité des racines d’un polyndme en
fonction des coefficients, etc.
La méthode des multiplicateurs de Lagrange a bien évidemment toute sa
place dans cette legon, a condition qu’elle soit illustrée par des exemples.
L’interprétation de I’énoncé en termes d’espace tangent est visuellement
éclairante et permet d’éviter les éventuelles confusions résultant de rai-
sonnements purement matriciels. Les candidates et candidats solides peuv-

ent s’intéresser a 1’étude locale d’applications suffisamment réguliéres



(submersions, immersions, théoréme du rang constant, lemme de Morse),
au lemme de Sard, ainsi qu’aux sous-variétés de R™.

215 Applications différentiables définies sur un ouvert de R™. Exemples et
applications.
L’idée de départ de cette lecon est qu’une fonction suffisamment réguliere
se comporte localement comme une application linéaire. De nombreuses
différentielles usuelles (notamment issues de l’algébre linéaire) peuvent
ainsi étre obtenues en calculant directement un développement limité.
Des exemples significatifs en dimension 2 et 3 pourront venir illustrer
la différence fondamentale avec la dimension 1. Les dérivées partielles
lorsqu’elles existent pourront clarifier I’expression de nombreuses diffé-
rentielles ainsi que la regle de la chaine.
Les candidates et candidats solides peuvent s’intéresser la notion de dif-
férentielle seconde pour les fonctions de classe C2, a la différentielle de
I’exponentielle matricielle, ainsi qu’aux points ou celle- ci est un difféo-
morphisme local, aux fonctions harmoniques et a leurs propriétés élémen-
taires, a la caractérisation des fonctions holomorphes et son interprétation
géométrique.
Pour ce qui concerne les applications, de nombreux themes relatifs aux
legons 214 ou 219 sont ici appropriés.

219 Extremums : existence, caractérisation, recherche. Exemples et appli-
cations.
Cette legon offre aux candidates et candidats une multitude d’approches
possibles : utilisation de la topologie, du calcul différentiel, de la convexité
(fonctions convexes, projection sur un convexe fermé et leurs multiples
applications), de I’holomorphie.
Les candidates et candidats peuvent proposer des problemes d’optimi-
sation sous contraintes, si possible autres que la preuve de l'inégalité
arithmético-géométrique. A ce sujet, une bonne compréhension de la mé-
thode des multiplicateurs de Lagrange requiert celle de la notion d’espace
tangent, qui en donne une justification beaucoup plus claire que certains
raisonnements purement matriciels. Les algorithmes de recherche d’ex-
tremums ont également leur place dans cette legon (méthode de Newton,
du gradient & pas optimal, probléme des moindres carrés, etc).
Les candidates et candidats solides peuvent s’intéresser aux diverses ver-

sions du principe du maximum (fonctions holomorphes ou harmoniques,



équations aux dérivées partielles), au calcul des variations, ou réfléchir a
I'unicité de la meilleure approximation dans divers espaces fonctionnels,
a commencer par celle des fonctions continues sur un segment par des

polynoémes de degré au plus égal a d.

1.2 Théoreme d’inversion locale

Théoréme 1.2.1. (Inversion locale.) Soit U C R™ un ouvert et soit f: U — R™
une fonction de classe C'. Soit a € U tel que df(a): R® — R™ est inversible.
Alors il existe un ouvert V.C U contenant a et un ouvert W C R™ contenant f(a)
tels que f(V) =W et la fonction induite f: V — W est un difféomorphisme.

On dit dans ce cas que f est un difféomorphisme local en a.

Démonstration. @ On va commencer par simplifier le contexte et montrer
qu’on peut se placer dans le cas a = f(a) =0, df (a) = I.
On pose U/ =U —a et g: U’ — R™ définie par

9(z) = df(a) " (f(a+z2) — f(a)) pour tout z € U’.

L'ouvert U’ contient 0, g(0) = 0 et par composition, g est de classe C! et
dg(0) = I,,.

Si on trouve deux ouverts V' 3 0, W’ 3 0 tels que g : V/ — W' est un
difféomorphisme, alors I’égalité f(x) = f(a) + df (a)g(xz — a) implique que f est
une bijection de V.= V' 4+ a sur W = f(a) + df (a)W’, ce qui est un ouvert
contenant f(a).

Les fonctions inverses sont liées par f~1(y) = g1 ([df(a)]*l(y - f(a))) +a,
ce qui montre que f~! est aussi de classe C! et f : V — W un difféomorphisme.

@ On suppose désormais
a=0, f(0)=0, et df(0)=1,, (1.1)
et on trouvera des ouverts V 5 0 et W 3 0 tels que
fvy=w et que f:V — W est bijective. (1.2)

Comme la fonction df: U — L(R™) est continue, il existe » > 0 tel que
B(0,r) C U et

Vz € B(0,r),  |ldf(z) - In|l < (1.3)

N |

On pose W = B(0, 5) et

V=f"(W)nB0,r) = {z€R" : |lz|| <ret |f(z)|< 5}



Puisque f est continue, V est un ouvert; il est clair que V' contient 0 et est
inclus dans U, et que f(V') C B(0, 5). Montrons qu’en réalité, f est bijective de
V sur W.

Pour cela, on fixe y € W = B(0, §). La recherche de son inverse se fera par

le théoréme de point fixe. Associons a y la fonction ¢, : U — R™ définie par

py(@) =z — (f(z) —y).

On observe que ¢, (x) = x si et seulement si f(z) = y.

La fonction ¢, est différentiable et par addition, dy,(z) = I, — df (z) pour
tout € U. Donc par (1.3), ||dgy(z)|| < 1 pour tout € B(0,r). La boule
fermée B(0,r) est convexe donc d’aprés I'inégalité des accroissements finis, on

a

_ 1 ,
Vo €BO),  lpy@) — el < 5 llz -7l (1.4)

c’est-a-dire, @, est %—Lipschitzienne.
De plus, f(0) = 0 donc ¢, (0) = y, et en appliquant I'inégalité triangulaire,

on obtient pour tout x € B(0,r),

1 T T
lley (@) < lloy (@) = @y O) + lleoy (O = S llzll +llyll < 5 + 5 =7

Donc ¢, (B(0,7)) C B(0,r) C B(0,r). La boule fermée B(0,r) est un espace
métrique complet donc d’apres le Théoreme du point fixe de Banach, il existe
un unique z € B(0,7) tel que ¢ (z) = x. Puisque ¢, envoie la boule fermée
B(0,7) dans la boule ouverte B(0,7), = appartient & cette derniére. On a donc
z €V et f(x) = y. Comme le point fixe de ¢, sur B(0,7) est unique, x est
I'unique élément de V' tel que f(x) = y. Ceci étant vrai pour tout y € B(0, 5),

on obtient la bijectivité de f.

@ Il reste maintenant a vérifier que I'application inverse
[Tl W=B(0,5) —V

est de classe C'. En sachant que sa différentielle est nécessairement df ~!(y) =
[df (f~1(x))]71, il suffit de montrer qu’elle est différentiable.
Montrons d’abord que f ne diminue pas beaucoup les distances. Pour tout

x,2’ €V et pour tout y € W on a, par (1.4),

I(z = (f(2) —y) = (&' = (f@) =)l = e =" = (f(z) = f(2")]| < % [l — 2|

(donc cette expression ne dépend pas de y), d’ou par I'inégalité triangulaire

If(z) = f@)] = % lr = "] (1.5)



Cela implique notamment que f~1 est 2-Lipschitzienne : || f~1(y) — f~1(y/)|| <
2|ly — ¢'|| pour tous y,y’ € W.
Ensuite, par (1.3), df () est inversible pour tout x € B(0,7), avec l'inverse

de norme ||[df (x)] 7} < 2:

)0 = | o0 - et < (5 =2
k=0

On peut montrer maintenant par définition que pour y € W, I'application
T = [df (f~1(y))] " est la différentielle de f~! en y. Soit a > 0 tel que B(y, a) C
W. Pour tout y' € B(y,a) on note x = f~1(y), 2’ = f~1(y'), et on obtient :

1F71 ) = 71 w) = T =)l = 1T (df () (2" = 2) + f(z) = f(2))]
<20f@) = [f(@) +df ()" — )] (1.6)

Comme f est différentiable en z, pour tout € > 0 il existe § > 0 tel que pour

z’ € B(z,d) (on peut supposer cette boule contenue dans V') on a

I1f(z") = [f(z) + df (z) (2" — 2)][| <ellz — 2.

Comme f~! est 2-Lipschitzienne, il suffit de poser 8 = min(a,§/2) pour ga-
rantir, pour tout ' € B(y, 8), 'inclusion ' € B(z,d). On peut donc majorer
Iexpression (1.6) par

< 2ef|lz — 2| < delly — /|,

y' € B(y, ), ce qui montre la différentiabilité de f~1. O

Evidemment, df (a) est inversible si et seulement si det(Jg(a)) #0.
A priori, il n’y a aucune raison pour qu'un difféomorphisme local soit un
difféomorphisme au sens global du terme. Nous verrons au Corollaire 1.2.4 com-

ment déduire une version ‘globale’ du Théoréme d’inversion locale.
Exemple 1.2.2. Soit f : M,,(R) — M,(R), A+ A%. Pour A,H € M,(R) on a
fA+ H)— f(A)=(A+H)? - A> = AH + HA+ H*.

Comme H? = o(|H|), H — 0, Uapplication linéaire L : H — AH + HA est la
différentielle df (A) de f en A.

St A =1, onadf(I)(H)=2H et df(I) = 2y, r). Cette application est
inversible, donc f est un difféomorphisme local en I : il existe un ouvert W

contenant I tel que la racine carrée f~1 est bien définie et de classe C' sur W.

Exercice 1.2.3. Obtenir la conclusion similaire pour exp : X — eX sur M, (R).



Corollaire 1.2.4. (Inversion globale.) Soient U C R™ un ouvert et f: U — R"
une fonction injective de classe C*. Si, pour tout x € U, lapplication linéaire
df(z): R® — R™ est inversible, alors l’image f(U) est un ouvert de R™ et la

fonction f: U — f(U) est un difféomorphisme.

Démonstration. Puisque f est injective, la fonction induite f: U — f(U) est
une bijection. On note f~1: f(U) — U sa fonction réciproque. Soit y € f(U)
et soit # = f~!(y). Par hypothese, df(z) est inversible donc par le Théoréme
1.2.1, il existe un ouvert V' C U contenant x et un ouvert W contenant y tels
que f(V) =W et f: V = W est un difffomorphisme. Pour plus de clarté, on

notera ici f|y cette fonction restreinte.

D’une part, Pouvert W est inclus dans f(U). Ainsi tout point de f(U) admet
un voisinage ouvert inclus dans f(U), ce qui prouve que f(U) est ouvert. D’autre
part, la restriction de f~! & W coincide avec ( f‘v)*1 et cette fonction est de
classe C'. Donc f~! est de classe C' au voisinage de . Ceci étant vrai pour

tout y € f(U), on obtient que la fonction f~1 est de classe C. O

Exercice 1.2.5. 1. Montrer que l'application
w:(r,0)— (z,y) = (rcosf,rsinb)

est un Ct-difféomorphisme de l’ouvert |0, 00 x | — w, 7| sur le plan privé
de la demi-droite R_. Si f(x,y) = g(r,0), donner les formules de passage
entre les dérivées partielles de f et celles de g.

2. Soit U le plan privé de lorigine, et f(x,y) = (2% — y2,22y). Montrer
que f est un difféomorphisme local a tout point de U mais n’est pas un
difféomorphisme global.

3. Soit h Uapplication de R? dans R? définie par (x,y) — (e® cosy, e® siny).
Montrer que h est de classe C' dans R? ; que dh(x,y) est inversible pour

tout (z,y) de R?; mais que h n’est pas un homéomorphisme de R% sur

h(R?).

1.3 Théoreme des fonctions implicites

On suppose connu le théoréeme de difféomorphisme local.
Exemple : 22 + y? = R? est le graphe d'une fonction y = h(x) si y # 0,

0
x = h(y) sinon; & remarquer que 2y = — (2% + 3% — R?).

dy



Théoréme 1.3.1. (Fonctions implicites.) Soit U C RP x R™ un ouvert et soit
f: U — R™ une fonction de classe C*. Soit a = (x9,y0) € U tel que f(xq,yo) =0

et Uapplication linéaire Oy f (zo,y0): R™ — R™ est inversible.

Alors il existe un ouvert V. C RP contenant xqg, un ouvert Q C U contenant

(z0,10) et une fonction p: V — R™ de classe C! tels que pour tout (z,y) € U,

{(z,y) €Q et f(z,y) =0} <= {2V et y=op(x)}. (1.7)

Notez que si dans cet énoncé on partait d’une fonction f : U — R™, ’hypo-
these d’inversiblité 0y, f(zo,yo) imposerait la condition n = m. C’est pourquoi

on se place d’emblée dans ce cadre.

Démonstration. On définit g: U — RP x R™ en posant

g(z,y) = (a:,f(;v,y)) pour tout (z,y) € U.

Puisque f(zg,y0) = 0, on a g(zo,y0) = (x0,0). De plus la fonction g est de

classe C! et
V(z,y) €U, V(h,k) € R" xR", [dg(z, )| (h, k) = (h, [df (z,y)](h,k)).

Soient L = dg(zo,y0) € L(R? x R"), A = 9,f(x0,¥%0) € L(R’,R") et B =
Oy f(z0,%0) € L(R™). D’apres ce qui précede, on a

L(h,k) = (h, A(h) + B(k))

pour tout (h,k) € RP x R™. Par hypothése, B est inversible, ce qui permet de

définir une application T' € L(RP x R™) en posant
T(u,v) = (u,—B 'A(u) + B~'(v)) pour tout (u,v) € RP x R™.

On vérifie que ToL et LoT sont égaux a I'identité de RP xR™, donc L = dg(xo, yo)

est inversible (d’inverse T).

Nous sommes donc en mesure d’appliquer le Théoréme d’inversion locale a g
au point (zg, yo). D’aprés celui-ci, il existe un ouvert Q C U contenant (g, yo)
et un ouvert £ C RP x R™ contenant (zg,0) tels que g(2) = Q' et g: Q@ — Q' est
un difféomorphisme. Quitte a restreindre, on peut supposer que Q' =V x V',
avec V' C R™ ouvert contenant zg et V' C RP ouvert contenant 0. On note
g1V x V' — Q C RP x R" la fonction inverse de la restriction de g a Q.

Compte tenu de la définition de g, il existe 0: V x V' — R™ de classe C* tel que

g Nz, 2) = (z,0(x, 2)) pour tout (z,2) €V x V'



Alors pour tous x € RP,y,z € R", on a
{(z,y) € Qet f(z,y) =2} <= {(2,2) €V x Vet g(z,2) =y}

par définition de I'inverse. On définit alors ¢: V' — R™ en posant ¢(x) = 6(z,0)
pour tout x € V, et il est clair que cette fonction vérifie les conclusions du

théoreme. O

Le théoréme dit donc que la surface {f = 0} est localement le graphe d’une

fonction .

On peut calculer la dérivée / différentielle de la fonction implicite : F(z, p(z)) =

0 dans V' implique que pour tout %, j

. 6FZ i 8F1 8901

J

ou, en forme matricielle,

—do F(x,0(x)) = dyF (2, o(z))dp(z),

d’ou
dp(z) = —(dyF(ac, @(x))>71d$F(x, o(x)).

Six = xg, on a (z,90(x)) = a et alors
dip(z0) = —(dyF(a)) ™ d,F(a).

Il est donc possible de calculer la différentielle de ¢ en a sans connaitre la
fonction ¢ elle-méme.
Si f est de classe C®) | 2 < k < oo, alors ¢ l'est aussi : on le montre par

récurrence a partir de la formule ci-dessus.

Exemple 1.3.2. L’équation v — 2u?x + uxy — 2 = 0 définit une fonction
0

implicite u(x,y) dans un voisinage de (1,1) avec u(1,1) = 2, car G—(u?’ -
u

2ulx +uxy —2) = 3u® — dux + 2y vaut 5 # 0 en (1,1,2). Les dérivées partielles

de cette fonction sont :

ou oF —-19F 1 6
%(17 1) = 7(%(1, 1a2)> %(17 1a2) = 75(7211‘2 + uy)‘(17172) = 5’
ou oF ~19F 1 2
87;“’ 1) = *(E(Ll’?)) 87;(1’ 1,2) = *5(Um)|(1,172) =75

On peut donc écrire sa forme approchée, par la formule de Taylor :

u(e,y) =2+ 2= 1) = 2y — 1D +oflle — Ly~ D).



Exercice 1.3.3. @ Soit f(x,y,2) = 23 — 2222 + wyz — 2. Montrer que dans
un voisinage de (1,1,2) la fonction implicite z = @(x,y) existe. Trouver ses
dérivées partielles et le développement limité du premier ordre en (1,1).

Soit

xu—i—yv—u?’

F(z,y,u,v) =
r+y+u+v
Montrer que dans un voisinage de (1,0,1,—2) on peut exprimer (u,v) en tant
que fonction de (z,y).
Ecrire sa différentielle en (1,0).
@ Soit f(z,y,2) = (x® —y?+22—1,2yz—1). Supposons que f(zo,yo,z0) =
(0,0). Montrer qu’il existe un ouvert I de R contenant xo et une application

¢ I — R? telle que p(z0) = (yo, 20) et f(z,¢(x)) = (0,0) pour tout x € I.

Exemple 1.3.4. Les racines d’un polynéme. Soit P(z) = 2" +a, 12" ' +
-« ++a1x+ag un polynome a coefficients réels scindé a racines simples. Montrer
qu’il existe un voisinage V de A = (an—1, .., a1,ap) tel que pour tout (cp—1,...,q1,00) €

V, le polynome Qu(x) = 2™ + iy 12" 1 + -+ + 17 + ag est scindé d racines

simples et ses racines s’expriment comme fonctions C* de (ap—1,...,Qp).
Solution : pour chaque racine xp de P, k =1,...,n, on applique le théoréme
de fonctions implicites en (ag,...,a0n—1,%k) 4
-1
Flag, .. an_1,2) =2" + ap_12" " 4+ -+ a1z + ag.

Les racines de P sont supposées simples, donc

g—i(am ey Qp_1,1) = P'(zk) # 0,
ce qui implique ’existence d’une fonction implicite py dans un voisinage V' de
A telle que p(A) = zy, et dun ouvert Q, > (A,xy) tel que {F =0} Ny =
{(a, pr(@)) : « € V'}. On peut supposer le voisinage V' le méme pour tout k ; en
le diminuant si besoin on peut garantir que les ouverts (U, sont disjoints. Pour
a €V on aura donc F(a,p1()) = -+ = F(a, pp(a)) =0, c’est-d-dire, pp(a),
k=1,...,n, sont les racines de Q.. Comme il y en a n et elles sont distinctes,

il n’y en a pas d’autres.

Exercice 1.3.5. Application : montrer qu’au voisinage d’une matrice réelle A €
M, (R), possédant n valeurs propres réelles distinctes, les matrices M gardent
n valeurs propres distinctes et que ces derniéres peuvent s’exprimer comme des

fonctions C*> de M.

10



1.4 Extréma liés

Théoréme 1.4.1. Soit U C R™ un ouvert, f : U = R, G : U — R™ de classe
Cl,m<n. Soit M ={x € U:G(x)=0}. Siac M est un extrémum local de
flm et dG(a) a le rang mazimal (= m), alors il existent A1, ..., Ay € R dits les

multiplicateurs de Lagrange tels que
Vf(a) = )\1VG1((1) + -+ )\mVGm(G,). (18)

Démonstration. Si n = m, 'hypothése dit que dG(a) est inversible, donc les
colonnes de cette matrice engendrent linéairement R™ > Vf(a). On suppose
donc par la suite m < n.

Soit p = rang dG(a). Il existent donc des lignes libres VG, (a), k =1,...,p.
Quitte & changer la numérotation, on peut supposer que ce sont VGi(a), k =
n—p+1,...,n. Notons dans la suite z = (z,y) € R" avec z € RP et y € R" 7P,
Nous sommes dans le hypotheses du théoreme de fonction implicite : il existe
un ouvert V' contenant zop = (ai,...,an—p), un ouvert @ C U contenant a et

une fonction ¢ : V — Q de classe C! tels que
MNnQ=A{(z¢(2):2€V}

Maintenant la fonction h: V — R, z — f(z, ¢(2)) admet un extrémum local en

zp, donc sa différentielle est nulle. On calcule
dh(z0) = 0.f(a) + 9, f(a)de(z0) = ..f(a) = D, £ () [9,G(a)] "' 0.G(a) =0

(ce sont des vecteurs lignes de RP).
La matrice d,G(a) est inversible, ses lignes forment donc une base de R™,

et il existent Aq,..., A\, € R tels que
0y f(a) = M0,G1(a) + -+ - + An0yGum(a) = (A1, ..., Am)3,G(a).
En le mettant dans la formule de dh(zo), on obtient
0.f(@) = (\iy- -, Am)3,G(a) [0,G(a)] "' 0.G(a) = 0,

d’ont 0, f(a) = (A1,...,Am)0.G(a). On a donc 'égalité en chaque coordonnée,
ce qui vérifie (1.8). O

Géométriquement : la surface M est orthogonale aux gradients des fonctions
G, i =1,...,m. Si f a un extrémum, sa dérivée «en toute direction sur la
surface» est nulle, donc son gradient y est orthogonal lui aussi, d’ou la décom-

position (77?).

11



En pratique : on obtient n équations, a priori non-linéaires, en n variables

x, paramétrées par A € R™.

Exemple 1.4.2. Trouver les extréma de f(x,y) = zy sur le cercle S* =
{(z,y) eR*: 22 +y> =1}.

On a Vf(x,y) = (y,x), remarquons donc que f (définie sur R%\ {(0,0)})
n'a pas d’extrémum local. Mais sur le compact S elle aura bien un mazimum
et un minimum ; trouvons-les.

Le cercle est I’ensemble de zéros de g(x,y) = 22+y*—1, a gradient Vg(x,y) =
(2x,2y) qui ne s’annule pas sur S*. Dans un extrémum lié il doit exister alors

A €R tel que Vf = AVyg, ce qu’on explicite :

y = 2\x,

T = 2\y.

Donc x = 4\%x. Comme x = 0 implique y = 0 et ne donne pas de points du

cercle, on obtient 4\* = 1 et A = +1/2. Par conséquence, *x =y ou x = —y.

Le premier cas donne deux points i(%, %), le deuziéme deux autres points
1 1

(L~ ).

La valeur de f en ses points est respectivement % et —i

5, ce sont donc deuw

mazimums et deux minimums.

Exemple 1.4.3. SidG(a) n'a pas le rang mazimal, alors la méthode ne permet
pas toujours de trouver les extrémums, méme s’ils existent. Soit g(z,y) = y>—a3,
flr,y) = (x+1)2 + 9% = d((x,y),(—l,O))z. La distance entre le point P =
(—1,0) et un ponit de la courbe y?> = 3 est minimisé évidemment en (x,y) =
(0,0). Calculons les gradients : Vf(x,y) = (2(x + 1),2y), V£(0,0) = (2,0),
Vg(x,y) = (=322,2y), Vg(0,0) = (0,0). Les hypothéses du théoréme de sont
pas vérifiées en ce minimum lié, et la conclusion non plus : un multiplicateur de

Lagrange n’existe pas.

1l faut donc vérifier a part les points ot le rang n’est pas maximal.

Exercice 1.4.4. Trowver les extréma de f(x,y,2) =z +y + 2z sur Uellipsoide
2

z 2
2

2
y z
E = : Iy
{(z,y,2) TG }

Exemple 1.4.5 (Inégalité de Holder). Soient p,q > 1 des réels conjugués :

% + % = 1. Alors pour tout n > 1 et tous réels positifs ag, b, k=1,...,n on a
n n l/p n l/q
S o< () " (3) "
k=1 k=1 k=1



L’inégalité est bien str nontriviale que dans le cas n = 2, ce qu’on suppose dans
1/p
. . _ n P . _
la suite. On suppose aussi A = ( b1 ak> non-nul, sinon ar = 0 pour tout
k Uinégalité est vérifiée. Quitte a diviser par A, on peut donc supposer A = 1.
On considére alors les by, des parameétres fizes, et on cherche a maximiser

fa) =3, axby sous la contrainte g(a) = >, _, at = 1. Les gradients sont :
Vi(a)=(b1,...,bn), Vg(a) =p(a® ', ... ak™b),

et celui de g me s’annule pas sur la surface en question. Dans les points ex-
trémauz il existe alors A € R tel que by, = )\paz_l pour tout k. La contrainte

donne

n n

zn:ai -y [i;r/(pl) S,

1 k=1

k
car ;B = (1 - %)’1 = q. En notant Y_;_, b} = B, on obtient \p = B, donc

by )1/(1)—1)

lextrémum est unique avec ay = (,\7) . La valeur de f en ce point est

- —Lo4+1 1 - s G __1
fla) =307 T W) T = Y 0T B TR = BT = B,

k=1 k=1
1l reste 4 montrer que c’est bien un mazimum. St B =0, alors f est identique-
ment nulle. Sinon, en posant ar, = 1, a; = 0 pour j # k, on obtient by, < B
en tant que les valeurs de f. Or, si by sont tous égaur a B, vu que n = 2, on
aurait la contradiction nBY = B9, ce qui montre qu’on a by, < B pour au moins
un indice k, donc B est un mazimum. On en déduit f(a) < B pour tout a sous

la contrainte A =1, d’ou l’inégalité.

Exercice 1.4.6 (Moyenne arithmétique et moyenne géométrique). Soient (a;)1<i<n

des nombres réels positifs. Montrer que

a1+...+an
n

Z /a1 ay.

Exercice 1.4.7. f(z,y) = x + 2y sous la contrainte g(z,y) = x> + zy + y? +
y—%5=0,U=R%.

Exercice 1.4.8. f(x,y,2) = 2% + y? + 22 sous contrainte
o 2 2
Tty +z2=1
r+y+2=0

Exercice 1.4.9. f(z,y,2) = (x —1)?>+ (y — 2)? + (2 — 3)? sous contrainte

224+ +2=21

3xr+2y+2=0
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Exercice 1.4.10. Trouvez le volume maximum d’une boite parallélépipédique

rectangle dont la surface est égale a S.

Exercice 1.4.11. Optimiser f(x,y,z) = yz + xy sous les contraintes xy = 1,

Y 4+ 22 =1.

Exercice 1.4.12. Minimiser f(z,y,2) = 2> +y* + 22 six+y+2 =9 et
x+ 2y + 3z = 20.

1.5 Submersion, immersions

Définition 1.5.1. Soit U C R™ un ouvert. Une application différentiable f :
U — R™ est dite submersion si le rang de df (x) est n pour tout x € U (il en suit
n < m). On dit que f est une immersion si df (z) est injective pour tout x € U

(donc nécessairement n < m).

Exemple 1.5.2. Les fonctions suivantes sont-elles des immersions ¢ des sub-

mersions ?

1. f:R* =% R% (2,y) — (2,9,0)

2. f:R3 = R2 (2,9,2) = (y,2)

3. f:R3 =R, (1,y,2) = zy + 2yz + 3xz

4. f:R—R? trs (sin(2t),sin(3t))

5 f:RP=R? (z,y,2) — (22 + % + 2%, 2y)
6. f:R? = R3, (x,y) — (€%, cosy,siny)

1.6 Sous-variétés de R"

Les énoncés et les définitions de cette section suivent [2]. Dans la définition
et dans le théoreme il faut comprendre «difféomorphisme» et «lisse» dans le
sens «de classe C*)», oli k (qui peut étre infini) est le méme dans toutes les
assertions. Donc strictement dit, on parle toujours d’une «sous-variété de classe

C®)y en précisant le k si besoin.

Définition 1.6.1. Une partie M C R™ est une sous-variété de dimension p de
R™ si pour tout a € M il existe des voisinages ouverts U de a et V de O et un

difféomorphisme f: U — V tels que f(UNM) =V N (RP x {0}).

Cette définition n’est pas la plus intuitive dans le cas de R™, mais elle cor-

respond & la notion générale d’une sous-variété différentielle.
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Exemple 1.6.2. Si M = {(z,y) € R? : 22+y? = 1}, sur U = {(z,y) : y > 0} on
peut poser f(z,y) = (v,22 +y*>—1). On obtient V = {(x,2) € R? : z > 22 — 1},
ce qui se vérifie par exemple en définissant la fonction inverse f~'(z,z) =
(z, m) Ces U, V, f valent pour y > 0; pour les autres points de M on

construit des fonctions similaires.

Théoreme 1.6.3. Soit M une partie de R™. Les propriétés suivantes sont équi-

valentes :
1. M est une sous-variété de dimension p de R™ ;

2. Pour tout a € M il existe un ouvert U contenant a et une submersion
g: U — R"P (ca.d le rang de dg(u) est n — p pour tout u € U) telle
que UNM = g=(0) ;

8. Pour tout a € M il existe une ouvert U contenant a, un ouvert  C RP
contenant 0 et une application h : Q — R™ qui est a la fois immersion
(c.d.d. dh(x) est injective pour tout x € ) et un homéomorphisme de §

surUNM ;

4. Pour tout a € M il existe un ouvert U contenant a, un ouwvert V.C RP
contenant (ai,...,ap) et une application lisse G : V. — R"™P tels que,
aprés permutation éventuelle des coordonnées, U N M soit égal au graphe

de G.

Démonstration. On note m = n — p.

@ = @ Pour a € M soient U, V, f donnés par (1). On garde I'ouvert
U et on pose g(u) = (f(p+1)(u),...,f(") (u)) € R™ pour u € U. Evidemment
g(u) = 0 si w € UN M. Réciproquement, si g(u) = 0, alors f(u) € VN (RP x
{0}), donc il existe v € U N M tel que f(u) = f(v). Par ’hypothese f est un
difféomorphisme donc u = v, et on conclut que g~*(0) = U N M. La matrice
de dg est constituée par les derniéres m colonnes de la matrice de df ; elles sont
donc linéairement indépendantes, ce qui montre que g est bien une submersion.

@ = @ Les colonnes de la matrice dg(a) sont aaugj, j=1,...,n. Par
I’hypothese, parmi ces colonnes il y a m libres. Quitte a permuter les coordon-
nées, on peut admettre que ce sont celles avec j =p+1,...,n. Pour u € R” on
note, comme dans le théoréme des fonctions implicites, u = (x,y) ou x € RP et
y € R™. On peut appliquer ce théoréme a la fonction g car dyg(a) est inversible,
par le choix des coordonnées y. Il existent alors un ouvert W C U, un ouvert
V C RP et une fonction lisse G : V' — R™ tels que W = {(z,G(x)) : x € V'}.

@ = @ On pose Q =V et h(z) = (z,G(z)). Par Ihypothese, h(Q) =
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U N M. La fonction h est continue, son inverse aussi car c’est la projection sur
les premieres p coordonnées, donc h est un homéomorphisme. Enfin, dh(z) =
Ip
dG(x)
@ = @ Par ’hypothese, il y a p indépendantes parmi les lignes de la

est évidemment injective de RP dans R™.

matrice dh(a). En permutant les coordonnées si nécessaire, on peut admettre
que ce soient le premieres p. Soit p, la projection sur ces coordonnées. Par
Corollaire, il existent un ouvert W contenant p,a et un ouvert V' C €2 contenant
0 tels que g :== p,h : V — W est un difféomorphisme.

On pose f(z,y) = (z,y — pyh(g7 ' (x)) sur Uy = U N (W x R™), et on note
V = f(Uy). Pour tout v € V on pose & = p,v et y = v+p,h(g~'(x)) pour obtenir
une fonction inverse. Il est évident que f et f~! sont de classe C¥), f est alors
un difféomorphisme de Uy sur V.Enfin, si (z,y) € Uy N M, alors (x,y) = h(z)
avec z € Q, donc = = g(z) et y = pyh(z) dou f(z,y) € RP x {0}. O

Exemple 1.6.4. @ Tout ouvert de R™ est une sous-varié¢té, f = Id dans la
définition. En particulier : GLy(R) dans R’
@ M = SL,(R) dans R est une sous-variété de dimension n? —1 : dans

le Théoréme (2), poser g(A) = det A — 1. En tout point A, la dérivée partielle
99
0A;;
@ La sphére S™ est une sous-variété de dimension n dans R**1. En (2) du

est le mineur correspondant et il en existe au moins un de non-nul.

Théoréme, poser g(x) = x1+---+ 2, — 1. Le gradient dg(xz) = 2z est non-nul
en tout x € S™.

@ Le produit M = My x My de sous-variétés de R™ de dimension p;,
j=1,2, est une sous-variété de R™ "2 de dimension p, + pa. Dans Théoréme
(4), poser U =Uy x Uz, V = Vi x Vy et G(x1,22) = (G1(21), G2(x2)). Le méme
pour un produit de tout nombre fini de facteurs.

En particulier, le tore T = (S1)™ est une variété de dimension n (qui peut étre
réalisé en tant que sous-variété de R®™, mais éventuellement de R™ avec m plus
petit).

@ On(R) = {A € M,(R) : AA" = I}, alors O,(R) = F~1(0) o0 F(A) =
AA'—T. Ona F(A+H)+I=(A+H)(A+H)! = AA'+ AH'+ HA'+ HH'
donc dF(A)(H) = AH' + HA'. L’image de dF(A) est contenu dans [’espace
des matrices symétriques Symy,(R), mais aussi toute matrice symélriqgue S y

est contenue car on peut poser H = %SA. La dimension de Sym,(R) est n +
n(n +1)
2
Soit P la projection de M,(R) sur Sym,(R) (qui ne garde que les coordonnées

(n—1)+---+1= , et s’est le rang de dF(A) pour toute A orthogonale.
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sur la diagonale et dessus), alors P o F est une submersion. La dimension de
1 -1
On(R) est donc n2 — n(n2+ ) = n<n2 )

A noter, la dimension de SO, (R) = O,(R) Ndet™*(]0, +00|) est la méme.
@ Le cone M = {(x,y,2) € R®: 22+ y? — 22 = 0,2 > 0} n’est pas une

sous-variété de R3. Supposons, en vue d’une contradiction, qu’il ’est, alors par
(3) du Théoréme il existe un ouvert U contenant 0 € M, un ouvert Q C R?
contenant 0 (en considérant les autres points de M on obtient nécessairement
p = 2) et une immersion h : Q — R3 réalisant un homéomorphisme entre §) et

U N M. En particulier, la fonction f : t — h(t,0), définie dans un intervalle

1
autour de 0, est dérivable, de dérivée non-nulle car df(0) = dh(0,0) et
0

dh(0,0) est injective. On a donc f(t) ~ f'(0)t, ¢ — O et ||f(t)|| ~ Clt| avec
C = |lf'(0)]| #0. Au méme temps, f3(t) atteint son minimum global en 0, donc
14(0) =0 et f5(t) = o(t), t — 0. Les valeurs de f étant dans M, on doit pourtant
avoir f3(t)% = f1(t)2+ f2(t)? ce qui implique ||f(t)||? = o(t?), contradiction avec
Déquivalence || f(t)|| ~ C|t|, C # 0, obtenue avant.

1.7 Le plan tangent
Soit M une sous-variété de R™, qu’on suppose pour simplicité égal a
M =F10)={z,0(x): 2 €V},

ot F:U — R™, m < n, est de classe C* avec dF(a) de rang m en tout a € M,
et V C RP est un ouvert, p =n —m, et ¢ de classe C'.

Soit a € M, et soit v : [—&,e] — M (avec € > 0) de classe C!, telle que
~v(0) = a. Sa dérivée 4/(0) en 0 est un vecteur de R™; on définit 7, M comme
I’ensemble de tels vecteurs tangents.

Il faut vérifier que T, M est un sous-espace vectoriel de R™. Pour le voir, on

se rappelle que (t) = (z(t),y(t)) € M donc y(t) = ¢(x(t)) pour tout ¢, alors

en particulier, 7/(0) = (2/(0), de(a)[z'(0)]). On peut avoir h € RP quelconque
en tant que 2/(0) : il suffit de poser v(t) = (z¢ + th, (xg + th)) si a = (o, yo)-
Donc

ToM = {(h,dp(a)[h]) : h € R"},
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c’est un sous-espace vectoriel de dimension p.

Exemple 1.7.1. Soit p(z,y) = /R? — 22 + y?, alors M est une demi-sphére

(on suppose 2% + y?> < R?). En tout point a = (x,y,z), on calcule

dp(z,y) =

e w8

donc

ToM = {(h,k,—(hz + ky)/z : h,k € R}.
On peut remarquer que

pour tout h,k, de sorte que T,M est l'orthogonal de (x,y,z). C’est un fait
général, et c’est vrai puisque (x,y,2) = %VF, ou F(x,y,2) =22+ 9%+ 22— R?

est la fonction telle que M = F~1(0) (restreint sur U = {(z,y,2) : 2 > 0}).

En général donc : par le théoréeme des fonctions implicites,

dp(zo) = —(0,F(a)) " 0, F(a),

etpour heRPetk=1,...,mona
((hs (@ (k). VEu(@)) = - b5 0) + Y (Aot (o)
j=1 J j=1 J

c’est la ligne k de
dF (a)[h, dg(a)[h] = 0. F (a)[] - 0, F(a) (0,F ()~ 0. F(a)[h] = 0.

Tout vecteur de T,M est donc orthogonal a chaque VFy(a), k = 1,...,m.
Comme les dimensions de ces espaces sont p et m = n — p respectivement, nous
avons 1’égalité

T,.M = (VF;(a), k=1,...,m),
qui donne une description alternative de I’espace tangent.

Exemple 1.7.2. Soit M = SL,(R) = {A € M,(R) ~ R" : det A = 1}. On a
F(A)=detA—1,m=1, et

oF
OAij

(les cofacteurs de A). En A =1, on a Cy;; = d;;, donc

(4) = Cy

T;M = {H € My,(R) : zn:H =0} = {H € M,(R) : TrH = 0}.

On note habituellement cet espace sl,(R).
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Chapitre 2

Intégration

2.1 Rapports

228 : Continuité, dérivabilité des fonctions réelles d’une variable
réelle. Exemples et applications. Au dela des définitions et premiers théo-
remes, le programme offre de nombreuses pistes aux candidates et candidats
pour élaborer leur plan : recherche d’extrema, utilisations de la continuité uni-
forme, fonctions convexes et leur régularité, approximation par des fonctions
régulieres, utilisations des formules de Taylor, liens entre caractere C*° et ana-
lycité, etc.

Des exemples explicites de fonctions continues et nulle part dérivables, de
fonctions continues et croissantes a dérivée nulle presque partout, de fonctions
C* a dérivées en un point prescrites, etc. sont les bienvenus dans cette lecon.

Les candidates et candidats solides peuvent s’intéresser a la dérivabilité des
fonctions monotones ou lipschitziennes ou a celle de 'intégrale indéfinie d’une
fonction intégrable, proposer diverses applications du théoréme de Baire (conti-
nuité d’une limite simple de fonctions continues, points de continuité d’une dé-
rivée, généricité des fonctions nulle part dérivables parmi les fonctions continues
ou des fonctions nulle part analytiques parmi les fonctions C*°, etc.)

229 : Fonctions monotones. Fonctions convexes. Exemples et appli-
cations. Les définitions et premieres propriétés liées a ces notions doivent bien
sir étre présentées pour pouvoir aborder les questions de limites et de continuité
de ces fonctions et leurs caractérisations a l'aide de leurs dérivées. Il convient
d’illustrer son exposé par de nombreux dessins.

La convexité est une source inépuisable d’inégalités, dans divers domaines

y compris les probabilités. Dans ce méme domaine, I’étude des fonctions de
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répartition de variables aléatoires réelles, fonctions croissantes s’il en est, est
une piste intéressante.

Au dela de la dimension 1, les fonctions convexes définies sur une partie
convexe de R™ font partie de cette lecon. La recherche de leurs extrema constitue
une thématique riche d’exemples. Les candidates et candidats solides peuvent
s’'intéresser a des questions de dérivabilité des fonctions monotones, ou de conti-

nuité des fonctions convexes définies sur un ouvert convexe de R™.

2.2 Limites inférieures et supérieures

Définition 2.2.1. Soit I C R un intervalle, f : I — R. Si xg est contenu dans

I avec un voisinage droit, on dit que

lim f(z)=¢

T—zo+
st
Ve>030>0: Ve €lzg,zo+[NI flz) <Ll+e;
Ve >0V >0 3z €|zg,x0+[NI: flzx)>l—e.
On définit de fagon similaire la limite inférieure a droite et les limites a

gauche.

Exercice 2.2.2. Montrer que

lim f(z)=inf sup f(2).
z—xo+ >0 ro<z<xo+0

Exercice 2.2.3. Montrer qu’on a toujours lim f(x) < lim f(z).

T—T0+ T—T0+
Exercice 2.2.4. Soit
sin(2), z#0
f(x) =
0, z = 0.

Trouver les quatre limites de f en 0.

Exercice 2.2.5. Montrer que f admet une limite en xg si et seulement si

Fn f(r)= lm f(z)= Fm f()= lm f(z)
T—To r—x0+ T—To T—To—

Définition 2.2.6. Soit I C R un intervalle, f : I — R. Si xg est contenu dans

I avec un voisinage droit, on définit la dérivée supérieure de f a droite :

Fiawo) = Tm L@ = J@0)

T—xo+ T — Xo

. . . ’ . s e g . s . \ . !
De facon similaire, sont définies la dérivée inférieure d droite f

fy(xo) et les

dérivées a gauche.
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Exercice 2.2.7. Montrer que f admet une dérivée en xo si et seulement si

fa(zo) = [ (w0) = fg(wo) = £ (x0)-

Exercice 2.2.8. Soit g(x) = — f(—x). Montrer que g;(azo) = i;(xo) et gy(zo) =

f_;(l“o)-

2.3 Fonctions monotones

Exercice 2.3.1. Soit f croissante sur la, b, zo €]a,bl. Montrer que f admet

des limites a droite et a gauche, et

lim f(x)= inf f(z), lim f(x)= sup f(z).

T—zo+ &>o T mo— 2<0

Solution : soit £y = inf, ., f(x). Pour tout € > 0 il existe x1 > xo tel que
f(z1) < b4 + €. Mais alors f(x) < €4 + € pour tout x €|xg,x1[; et au méme
temps, évidemment f(x) > £y. On a montré alors que {1 = limg .4 f(2).

Pour la limite a gauche la preuve est similaire.

Un fonction monotone f est donc continue en xg ssi ses limites a droite et a

gauche sont égales. Un point de discontinuité est dit un saut de f.

Exercice 2.3.2. Soit f croissante sur [a,b], et soit S l’ensemble de ses points
de saut. Montrer que S est dénombrable et

> _[f(s+) = F(s)] < f(b) = f(a).

seS

Soit f continue sur [a, b]. Disons que x € [a, b] est invisible d droite s'il existe
y €]z, b] tel que f(z) < f(y).

Lemme 2.3.3 (de Riesz). Soit f continue sur [a,b]. L’ensemble U des points in-
visible & droite est alors ouvert, et en le représentant U = Uy|ay, by[ en réunion

d’intervalles disjoints, on a f(a,) < f(bn) pour tout n.

Démonstration. Si x est invisible a droite, alors par continuité tout point assez
proche de z l'est aussi, alors U est ouvert. Dans la représentation donnée ci-
dessus, supposons que pour un certain n, on a f(a,) > f(b,). Il existe alors
T €lan, by[ tel que f(x) > f(by); soit xg = sup{y € [z,bx] : f(y) = f(z)}. On a
évidemment xg €|an, by[.

Comme z( € U, il existe y €]xg, b] tel que f(zg) < f(y), et on ne peut pas
avoir y < b, car sinon il existerait z € [y,b,] avec f(z) = f(xg). Mais alors
f(bn) < fy) et y €]by,b], ce qui implique b,, € U ; cela contredit ’hypothese

que b,, est une borne de décomposition de U en composantes disjointes. O
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De maniere identique, on montre que l’ensemble des points invisibles a

gauche vérifie les conclusions symétriques, avec f(an) = f(by).

Lemme 2.3.4. Soit I un intervalle ouvert borné, et soit A C I tel que avec un

certain p €10, 1], pour tout [o, 5] C I on a

A(AN]e, B]) < p(B — ).
Alors M(A) = 0.

Démonstration. La mesure de Lebesgue est réguliere, alors pour tout € > 0 il
existe un ouvert U C I tel que A C U et A(U) < A(A) + . On décompose U =
Un, |@n, by [ en réunion disjointe. Par ’hypothese, on a A(AN]an, by]) < p(bn—ay)

pour tout n, d’ou
A(A) < Z)\(Aﬂ]ambn[) < PZ(bn —an) = pA(U),

donc A(U) < pA(U) + & ddu A(U) < ¢/(1 — p). On en déduit immédiatement
A(A) =0.
O

Théoréme 2.3.5 (Lebesgue). Toute fonction monotone sur un intervalle est

dérivable presque partout.

Démonstration. Introduisons les notations : I C R un intervalle, f : I — R.
Sans perte de généralité nous pouvons supposer f croissante et I = [a,b], a < b.

Nous allons montrer que presque partout

> fh(x). (2.1)

—
=
el
S
~—
A
—~
[\
N—
[~
~—
S
N—
V

@ Soit Igypa={x €1I: fc’l(x) = 00}. Supposons que xg € Igyyp q. Alors

fx) = f(=o)

inf sup ————~ =+o00,
0>0 po<ax<zo+6 T — o

f(@) = f(z0)

Tr — X
f(x)—Cx > f(x9) —Cuxp. Le point zq est donc invisible & droite pour la fonction

et pour tout C' > 0 il existe x > zo dans I tel que > (C, d’ou
g(x) = f(xz) — Cx. Par le lemme de Riesz, 'ensemble U de tels points est ouvert
et se décompose en réunion disjointe U = Uy]an, by[ telle que g(a,) < g(by)

pour tout n. On a donc f(a,) — Ca, < f(b,) — Cb, et

Z(bn —a,) < Z f(bn) ;f(an) - £(b) ;f(a)'

n

22



M, avec C' > 0 arbitraire;

La mesure de Ig,p.q C U est donc majorée par
cela montre que sa mesure est nulle.
@ Notons ligcsqa = {2 : i;(m) < fi(x)}. Sizo € Iig<sa, alors il existent
C4, Cy tels que
fi(w0) < C1 < Ca < fo(wo)- (2.2)
On appliquera le lemme de Riesz deux fois sur des sous-intervalles.
Soit [e, ] C I, et supposons que xo € lijg<sqN]a, B[. Par (2.2), on trouve

x < xg tel que x > a et
f(z) = f(zo)

T — X

<Cla

d’ou f(x)— f(xg) > C1(x—x0). Ceci implique que xq est invisible & gauche pour
g(x) = f(z) — Cy1z. Par le lemme de Riesz (sur ]o, 3[), on décompose I’ensemble
de tels points Uy = Uylan, by[, en obtenant g(a,) = f(an) — Cra, = g(by) =
f(by) — C1b,, donc

UETDEDS %f(an)

Revenons & Ijg<sq. Pour g € IigesaN]a, B[ C Uy, soit n tel que z¢ €lay, byl
Par (2.2), on trouve z > x¢ qu’on peut choisir dans |a,, b,[ tel que

f(@) = f(xo)

T — X0

> CQ;

donc f(z) — f(zg) > Ca(x — x0) et xq est invisible & droite pour h(z) = f(x) —
Cox, sur lintervalle ]a,, b,[. On applique le lemme de Riesz comme dans la

partie (1), en obtenant

Z(bkn — apn) < Z f(bkn)g f(akn) < f(bn) — f(an).
k 2

k Ca
Mais alors, en notant p = %,
b,) — flan, C
MTigesan]on B) <Y %j() < 5; > (bn —an) < p(B — ).

Lemme 2.3.4 implique maintenant que A(I;4<sq) = 0.
@ En appliquant le résultat obtenu (2.1) a g(x) = — f(—x), nous obtenons

que presque partout

f(@) < fo(@) < (@) < fal@) < £ (),
ce qui montre que ces quatre nombres sont égaux et f est dérivable en x. O
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La dérivée peut parfois surprendre :

Exercice 2.3.6. Montrer que l’escalier de Cantor a presque partout la dérivée

nulle.

Corollaire 2.3.7. Soit f Lebesgue intégrable sur [a,b], et soit F(x) = [ f(t)dt

son intégrale indéfinie. Alors F' est presque partout dérivable.

2.4 La dérivée de l’intégrale

Soit f intégrable sur [a, b]. On peut définir son intégrale indéfinie qui est une

fonction F sur [a,b] :
F(z) = / fdA.

On ne peut pas s’attendre a ce que F' soit dérivable partout : il suffit de consi-

dérer [a,b] = [—1,1] et

Mais on verra que F' est dérivable presque partout.

Il est clair que F est la différence de deux fonctions monotones :

F(z) = /: FrdX — /; F_dA.

Théoréme 2.4.1. Soit f intégrable sur [a,b], et soit F' son intégrale

indéfinie. Alors F' existe presque partout et F/ = f.
p.p-

Démonstration. L’existence presque partout suit du théoréme de Lebesgue, et le
reste de la preuve est pour montrer 1’égalité I/ = f. On va démontrer d’abord
p-p.
que f > F'.
p.p.
Si z est tel que f(z) < F'(x), alors ils existent ¢,r € Q tels que f(z) < ¢ <
r < F'(zx). Soit

E,r={x: f(z)<qg<r<Fl(x)}.

On vérifie qu’en fait, ensemble E = {z : f(z) < F’(x)} est la réunion

E= U E,,.
q,7€Q

Le but est de montrer que A(E,,) = 0 pour tout ¢, r; comme la réunion est

dénombrable, il en suivra A(E) =0 et donc f > F'.
p.p.
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Avec g, r fixes, on peut ajouter une constante & f — ce qui ajoute la méme
constante a F’ — et admettre ¢ > 0.

Fixons € > 0. Par la continuité absolue, il existe § > 0 tel que | [ fd <e
pour tout intervalle I de longueur |I| = A() < d. On peut choisir § < ¢/r. Par
la construction de la mesure de Lebesgue (& rappeler, la mesure extérieure est
la borne inférieure par des recouvrements par des intervalles, et ceux-la on peut
choisir ouverts) il existe un ouvert V' tel que Eq C V et A(V) < A(Eyr) + 6.

Comme F'(z) > r pour z € E,, il existe un voisinage assez petit |ay, b, [ de

x (qu'on peut supposer contenu dans V') tel que dans ce voisinage,

Fly) - Fl@) _

2.
— (23)
Si on note G(y) = F(y) — ry, on remarque, en transformant (2.3), que
Gly) > G(x)siy>xzet Gly) < G(zx) siy < x, (2.4)

pour y € lag, by[.

Le point z est donc invisible a droite pour G. Soit U 1’ensemble des points
invisibles & droite pour G, et soit U = LﬁJ o, Br| sa décomposition en réunion
dénombrable d’intervalles ouverts disjoints. Par le lemme de Riesz, on a G(a,,) <
G(B,) pour tout n, et on rappelle que E, C U.

L’inégalité obtenue G(ay,) < G(5r)
est équivalente a

F(Bn) — F(an) = r(Bn — an)

pour tout n.

On aura alors :

oo

o0 ﬂk oo
[ rin=3" [ gan= (PG - Plaw)] > r 3o (6 - aw) = rA©),
U k=0 " @k k =

=0 k=0

et au méme temps
/ fd\ = fd\+ / fd\ < g\(Ey) + ¢
U Eqr U\Eqr

car N(U\ Ey) < AM(V'\ Ey) < 8. On obtient g\(Eqy,.) +& > rA(U) = rA(Ey,), et

€

E,. .
MEy) <

En choisissant ¢ arbitrairement petit, on montre alors que A(E,-) = 0. Cela
implique f > F'(z).
p.p.
En passant a — f et donc & —F, on montre que —f > —F'(z)et f < F'(x),

p.p. p-p.
ce qui termine la preuve. O

(fin du cours 5)
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2.5 Continuité absolue et l’intégrale indéfinie

Théoréme 2.5.1 (Continuité absolue de 'intégrale). Soit f intégrable sur X.

Alors pour tout € > 0 il existe § > 0 tel que si u(A) < 9§, alors

\/AfduK/A\fldu<8-

Démonstration. En utilisant 1'inégalité |ffdp| < f | f|du, on peut supposer f

positive. Selon la définition de l'intégrale, il existe une fonction étagée g telle

€
/gdu>/fdu757
X X

O</X(f—g)du<§.

que 0 < g< fet

alors

2

On peut supposer f non-nulle (sinon ’assertion est triviale), alors on pourra

toujours choisir g non-nulle. Comme ¢ est bornée, pour tout A € F

/A gt < p(A) | glloo # 0.

On pose § = ﬁ, alors pour tout ensemble A de mesure p(A) < § on obtient
€
0< / fdu = / gdu+/(f—g)du <u(A)lglloc + 5 <&
A A A 2

Définition 2.5.2. Soit (X, F,u) un espace mesuré. Une autre mesure
v sur (X, F) est dite absolument continue par rapport & p si u(A) =0
implique v(A) = 0. Notation : v < p.

Exercice 2.5.3. Soit u et v des mesures finies sur (X,F) telles que v < p.
Montrer que pour tout € > 0 il existe 6 > 0 tel que u(A) < & implique v(A) < €.

[On suppose le contraire et on choisit A,, € F tels que u(A,) < 27", v(Ayn) 2
€0 > 0 pour tout n. En posant By, = Up>n Ak, on obtient une suite décroissante
(B,,) de mesure u(B,,) < 217", tant que v(B,,) > v(A,) = 9. Pour B=N,B,
on aura alors p(B) = 0 mais v(B) > ey par continuité, ce qui contredit la

continuité absolue.]

Ce résultat n’est pas vrai si les mesures ne sont pas finies : sur X = Ry,

considérer v(A) = [, 1dx (par rapport & la mesure de Lebesgue).

Remarque 2.5.4. Toute mesure d densité est évidemment absolument continue

par rapport & p. On peut montrer la reciproque : si v est absolument continue,
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alors il existe f telle que v = py est une mesure a densité f. Ce résultat s’appelle

le théoréme de Radon-Nikodym (donné plus tard).

Cette notion est liée a la classe suivante de fonctions :

Définition 2.5.5. On dit que F : [a,b] — R est absolument continue si
pour tout € > 0 il existe & > 0 tel que pour toute famille d’intervalles

disjoints Uk (ak, bx) C [a, D]

Z(bk —ag) <3 implique Z |F(by) — F(ag)| < e.
k k

\. J

Remarque 2.5.6. Toute fonction absolument continue est continue en tout
point x € [a,b] : si e,0 sont comme dans la définition et |y — x| < §, alors

[F(y) = F(x)| <e.
[Toute fonction absolument continue est a variation bornée.]

Proposition 2.5.7. Si F' est lintégrale indéfinie d’une fonction f intégrable

sur [a,b], alors F est absolument continue.

Démonstration. Suit directement du Théoréme 2.5.1 : en posant I = U (ag, bg),

on a NI)=> (by —ax) <9, alors
%

Z|F bi) — F(ax)| = —/aak fdA|
_Z‘/%k s < Z/ak . |f|dA=/I|f\dA<g.

O

Exercice 2.5.8. Montrer que toute fonction lipschitzienne est absolument conti-

nue.

Exercice 2.5.9. Montrer que la fonction holderienne ¢, 0 < «, est absolument

continue sur [0, 1].

Exercice 2.5.10. Montrer que l’escalier de Cantor (a) n’est pas absolument
In2

continu; (b) vérifie la condition de Holdér avec a = m3
n

2.6 Théoreme fondamental de ’analyse

On appelle ainsi la formule de Newton—Leibnitz :



Il faut préciser que méme dans le sens de Lebesgue, ’égalité n’est pas toujours

vérifié : pour I'«escalier de Cantor» F ot on a F(1) — F(0) = 1 mais F' = 0.
p.p.

On verra que la formule est vraie pour les fonctions absolument continues; et

que c’est exactement la classe des intégrales indéfinies de fonctions intégrables.

Théoréme 2.6.1. Si F' est absolument continue sur [a,b], alors elle est presque

partout dérivable et ,

F(b) — F(a) = / F'(z)dx.

a

Suivra directement du théoreme de Radon-Nikodym.

Pour le moment, on démontre le cas particulier suivant :

Théoréme 2.6.2. Si F est continue et dérivable sur [a,b], avec la dérivée
F’ bornée sur [a,b], alors F' est intégrable et
b

F(b) — F(a) = / F'(z)dz.

a

\. J

Démonstration. On peut prolonger F sur [b,b+ 1] en posant F(x +b) = F(b) +
F'(b)z. Pour n € N, n > 0, on peut alors définir sur [a, b] les fonctions

F(:EJr%)fF(z)_ 1
1/ —n[F(:v—l—ﬁ)—F(at)],

F.(z) =

z € [a,b]. Par 'hypothese, F,, — F’ sur [a,b]. Il en suit déja que F’ est mesu-
rable, et en étant bornée elle est intégrable. Par le théoreme d’accroissement finis
pour chaque z € [a, b] et chaque n il existe y € [z, 2+ 2] tel que F,(z) = F'(y),
donc

[Fn(2)] < C = sup{|F'(2)| : € [a,]}.

Par le théoréeme de convergence dominée,

b

b b
/ F'd\ = lim F,d\ = lim n|[F(z+ l) — F(z)]d\(z) =
o n

n—oo a n—oo

b+1/n at+1l/n
lim n[ / Fd\ — / Fd/\}
n—oo b a

(On peut faire le changement de variable  — x — 1/n car les fonctions sous

les intégrales sont continues, alors on peut calculer les intégrales au sens de
Riemann.) Encore par le théoréeme d’accroissement finis mais appliqué a 'inté-
grale indéfinie de F', ces derniéres intégrales sont égales & F'(b,,)/n et F(a,)/n

respectivement, ou b, € [b,b+ 1/n] et a,, € [a,a + 1/n]. On conclut que

/b F'd\ = lim [F(b,) — F(an)] = F(b) — F(a).

n—oo
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2.7 Décomposition de Hahn

Définition 2.7.1. Soit (X, F) un espace mesurable. On appelle une mesure d
valeurs réelles toute application p: F — R o-additive telle que u(0) = 0.

On dit que A € F est positif pour p si u(AN B) = 0 pour tout B € F;
autrement dit, si u|a est une mesure positive. De la méme fagcon on définit des

parties négatives.

Exercice 2.7.2. Montrer qu’on a toujours
sup{|u(A)|: A€ F} < .

Théoréme 2.7.3 (Décomposition de Hahn). Soit (X, F) un espace mesurable
et p une mesure 4 valeurs réelles sur (X, F). Il existe alors Ay € F tel que A

est positif pour p et A_ = X \ Ay est négatif.
Démonstration. L’ensemble vide est considéré négatif pour p; soit
m = inf{ u(A) : A est négatif pour p}.

On choisit une suite d’ensembles (A, ) C F telle que u(A,) — m, n — oo, et on
pose pour chaque n

A;l = ngnAk-
On vérifie que A}, est négatif, et alors
m < p(Ay) = p(An) + p(A7\ An) < p(An),
d’ou u(Al) — m. On pose A = U, A}, = U,A,. On a alors
p(A-) = u(AgUUW (AL 1 \AL)) = n(Ag) + Dl AL 41\ A7) = lim (A7) = m.
L’ensemble A_ est négatif : pour B € F
W(A- 0 B) = u(Ay N B) + 3" Ay 0 (B AL)) < 0.
n

Montrons maintenant que Ay = X \ A_ est positif.

Si ce n’est pas le cas, alors il existe B C Ay tel que u(B) < 0. Si ’ensemble
B était négatif, alors C = A_ U B le serait aussi, avec u(C) < m, ce qui est
impossible. Il en suit que B n’est pas négatif. Pour les mémes raisons, aucune
de ses parties & mesure négative n’est pas négative.

Comme 0 < M = sup{pu(C) : C C B} < oo, il existe By C B tel que
w(B1) > M — g1, out &1 = min(1, M/2). On définit ensuite M; = sup{u(C) :
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C C B\ B1} < o et on choisit By C B\ B; tel que pu(Bs) > My — 3, avec
€9 = min(1/2,M;/2) > 0. En continuant ainsi, on obtient une suite (B,,) de

parties disjointes de B, telles que pour tout n, on a pu(B,i1) > My — &p, olt
M,, = sup{u(A) : A C B\ Upcn By} >0

et €, = min(1/2", M,,/2). On pose C = B\ U, B,,. Pour tout A C C on doit
avoir u(A) < 0, sinon il existerait n € N tel que u(A) > 1/2™; mais alors
ANBpy1 =0, AUB, 41 C B\ Up<n By, et

1

2n+Mn_€n>Mna

(AU Bry1) = p(A) + p(Bpir) >

ce qui est une contradiction. L’ensemble C' est donc négatif ; mais dans ce cas,

C' U A_ est négatif, avec

W(CUA) =m+pu(C)=m+pu(B) =Y _ u(Bn) <m+pu(B)<m,

n

ce qui est une contradiction encore. On conclut que A est positif. O

Corollaire 2.7.4. Soit (X, F) un espace mesurable et i une mesure & valeurs

réelles sur (X, F). Il existent alors deux mesures positives pi,pu— sur (X,F)

telles que p = py — p—.

Démonstration. Pour A € F, on pose pi(A) = p(ANAy) et u_(A) = u(AN
A). O

2.8 Théoreme de Radon-Nikodym

Définition 2.8.1. Soit (X, F, 1) un espace mesuré et v une mesure sur (X, F).
On dit que v est absolument continue par rapport d p, noté v < u, si u(A) =0

implique v(A) = 0.

Théoréme 2.8.2. Soit (X, F,u) un espace mesuré et v une mesure finie abso-
lument continue par rapport a . Alors il existe f : X — R mesurable positive

telle que pour tout A € F
v(A) = / fdu.
A
La fonction f est unique (a l’égalité presque partout prés) ; on Uappelle la dérivée

de Radon-Nikodym de v par rapport a p.

Démonstration. Notons

E ={g: X — Ry mesurable : / gdp < v(A) VAe F}.
A
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On a évidemment 0 € E et fX gdp < v(X) pour toute g € E. Soit

M:sup{/ngp: geE}.

On choisit une suite (g,) C E telle que [y gndp — M. En passant a f, =
max(gi,...,gn), on obtient une suite croissante; montrons que f, € E. Pour
Ae Fetl<k<mn soit A4, = {z € A: f, = gr}. Ces ensembles sont

mesurables, et

/Afndu = zk: /Ak grdp < zk: v(Ar) = v(A),

donc on a bien f, € E. Notons f = sup,, f,, = lim, f, : ce sera la fonction

recherchée. Par le lemme de Beppo Lévi on a pour tout A € F

[ gdn=tim [ fudn <o),

donc f € E; et en particulier, [, fdu = M.
Montrons maintenant que [ 4 fdp = v(A) pour tout A € F, en supposant le
contraire : il existe Ay € F tel que
fdp < v(Ao);
Ao
I'inégalité opposée est impossible car f € E.

La mesure v/ : A — v(A) — [ 4 fdp est nonnégative, absolument continue
par rapport & p et v/(A4g) > 0.

Pour tout n, la mesure a valeurs réelles v, = v/ — u/n admet une décom-
position de Hahn ; soit A} son ensemble maximal positif, et soit AT = U, AF.
Si u(A;)) = 0 pour tout n, alors u(A*) = 0 d’ou v/(AT) = 0; dans ce cas on
aurait v/(Ag N AT) <V (AT) =0 et v,(Ao \ A1) <0, donc

V(A0 \ A7) < A\ A)

pour tout n, d’ott v/(Ag \ AT) =0 et v/(Ap) = 0 contrairement au choix de Ay.
Il existe donc n tel que u(A;) > 0. Posons h = f + %IAZ' Pour tout A € F
on a

Ogl/n(AﬁA:):V’(AﬂAi)flu(AﬂA:),
n
donc
1
[ hdu= [ gans cpanan) < [ ganevanag)
A A n A

< /A Fdu+v'(4) = v(A).
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La fonction h est donc dans E, mais
, 1
intxhdp = | fdu+ Eu(An) > M,
X

contrairement au choix de f.
L’existence de Ag est donc impossible, et nous avons pour tout A 1’égalité

recherchée. O

Démonstration. Supposons p finie et posons A = g+ v. On a v < A donc

f = [ fdv est une fonctionnelle linéaire bornée sur L?(X, \) :

’/de”’ </X|fldv</X\fldA<A<X>1/2\\f||2,A.

Par le théoréme de Riesz, il existe g € L?(X, \) telle que [ fdv = [ fgd\ pour

toute f € L?()\), donc
[ 1= g = [ radn

Soit Ag ={z € X : g(x) <Oet Ay ={x € X : g(x) > 1}. En posant f = I,
on obtient :
Vo) < [ (g = [ gdu<o
Ao Ao
d’ott ¥(A4p) = 0, mais alors de la méme inégalité p(Ap) = 0. Ensuite,

0> / (1-g)dv= / gdp > p(Ay)
A1 Al

d’ott (A1) =0 et alors v(A4;) = 0. Il en suit 0 < g < 1 I-presque partout, et la

changeant si nécessaire, on peut avoir 0 < g < 1 partout. On pose ¢ = T I et
-9
on a pour tout A
_ 9 _ _
pdp = [ I dp= | Iadv =v(4),
A x l—g X
car T4 € L%(\) (toutes les mesures sont finies). O

2.9 La dualité des L?

On suppose fixé un espace mesuré (X, F, ). On fixe ensuite p,q € [1, +00]
1
conjugués : — + — = 1.
p

Rappelons que si u(A) < oo, alors LP(A, u) C LY(A, p).

Lemme 2.9.1. Pour g € LY(X), soit ¢4 : LP(X) — C défini par

wq(f) = /X fgdp.

Alors g est bien défini, linéaire, et bornée de norme ||¢q4|l = |/g]|q-
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Démonstration. Le fait que l'intégrale converge et est bornée par || f|,|lgll, est
I'inégalité de Holder qu’on suppose connue (et qui ne nécessite aucune hypothese
particuliére sur p).

Par définition de l'intégrale, il existe une suite (g,,) croissante de fonctions

étagées telles que 0 < g, < |g|? et

lglle = / lg%dp = lim / gnd.
X n—oo X

En posant f,, = g}/p7 on obtient f, € LP(X) de norme ||f,||} = [y gndp, et

(comme |g| > gi'%)

/ fngdp > / g/ gt Py = / Indp,
X X X

d’ou
1-1/p
(0o (Fl (/ gudp) = llglles n - oo,
||anP X
ce qui montre 1'égalité ||, = ||gll4- -

Lemme 2.9.2. Supposons que p est o-finie. Soit g : X — C mesurable, et telle
que pour tout f € LP(u), on a fg € L*(u), et il existe une constante C > 0 telle
que pour tout f € LP(u)

| sadu| < sl

Alors g € Li(p) et ||gllq < C.

Démonstration. Soit ¢ : X — C «l’argument de g» :

lg()|
)= 9@ g(w) #0,

1,9(z) =0.

C’est une fonction mesurable, |p| = 1 et pg = |g|. Si f € LP(X), alors fp €
LP(X) et
| seadu] < Clsell, = i,

d’ot 'on voit que 'hypotheése vaut aussi pour |g|, et on note que g € LI(X) ssi
lg| € LY(X). On supposera alors dans la suite g > 0.

Supposons aussi p > 1. Soit g, — ¢ une suite croissante de fonctions étagées
telle que 0 < g, < g. Pour tout A € F de mesure finie, on pose f, = I4g%7 !,

alors f, est bornée donc dans LP(A) et, comme p(q — 1) = pq/p = ¢,
1/p
0< / fngndu:/gzdu < / fngdp < C|| fullp ZC(/ gidu) :
A A A A

1-1/p
d’ott (fA ggd,u) = ||gndallq < C. 1l en suit tout de suite que ||glall; < C,
et par définition de l'intégrale, ||g||, < C.
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[Rappel : p est o-finie, donc il existe une suite croissante (X,,) de parties

de X de mesure finie telle que X = U, X,,; par définition, g € L(X) si

g € LI(X,,) pour tout m, et ||gl[q = sup,, [|91x,, ll¢]
Soit enfin p =1 et ¢ = c0. On pose A = {z € X : g(x) > C}. Si u(4) > 0,
on peut trouver (encore utilisant le fait que p est o-finie) B C A de mesure finie

tel que pu(B) > 0; pour f = I on a par ’hypotheése

0</ fgdu=/gdu<0u(3),
X B

mais directement on obtient [, gdu > Cu(B). Cette contradiction montre que

w(A) = 0. O

Théoréme 2.9.3. Supposons que p est o-finie. L’application g — ¢4, LY(X) —

LP(X)*, est une isométrie bijective.

Démonstration. Isométrie étant déja démontrée, il nous faut montrer que pour
p e LP(X)* il existe g € LI(X) telle que ¢ = .

Supposons d’abord que p est finie. On passe par les mesures : pour £ € F on
pose V(E) = p(Ig); c’est bien défini car p est finie et Ig € LP(X). On obtient
une mesure 4 valeurs réelles (pas nécessairement positive) v, qui est absolument
continue par rapport a p : si p(E) = 0 alors Iy = 0 dans LP(X), donc v(E) = 0.
Elle est o-additive : si F = U,FE, et les E, € F sont disjoints, alors la série

> . 1e, converge en norme || - |, : pour tout N € N

N 1/p
s~ I, Il = u(E \ uﬁzlEn) 0, n— 0.
n=1

Il en suit

N
v(E) = p(Ip) = lim o( Y In,) =3 v(En).

n

Par le théoréme de Radon-Nikodym, il existe g € L'(u), la densité de v par
rapport & 4, telle que v(E) = [y gdu = [ Ig gdp pour tout E € F. L’égalité
o(f)= [ « fg étant vérifiée pour toutes les indicatrices, elle vaut par linéarité
pour toutes les fonctions étagées donc par continuité sur LP(X) tout entier, et
nous avons bien ¢ = p,. Par le lemme, g € L(u).

Soit maintenant p o-finie, et X = U,,, X,,, ou la suite (X,,) est croissante et
chaque X,, de mesure finie. Pour chaque m, on peut identifier L?(X,,, 1) avec
lespace des fonctions dans LP(X) qui s’annulent hors X,,,. La restriction de ¢
sur cet espace est alors de forme f +— me fgmdu avec g, € LY(X,,) C LX)

de norme ||gm|lq < |l¢||. Sim <, les fonctionnelles g, = ¢4, = ¢ sur LP(X,,)
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sont les mémes, donc g,, = ¢; presque partout. L’ensemble

A=Un{z € X : gn(z) # qi(x)}

est de mesure nulle, alors on peut définir la fonction g : X — C en posant
g = gm sur X,, \ A et g =0 sur A, pour obtenir ¢, = ¢, sur chaque L”(X,,).
Par construction, g € LX) et ||g|lq < |l¢||. Enfin, si f € LP(X), alors

[ tadu=tim [ fodn=timp(¢1x,) = o)
X Xm
O

Corollaire 2.9.4. Les espaces LP (X)) sont réflexifs si 1 < p < oo (et p o-finie).

Exemple 2.9.5. Sur > = (>°(N), il existe une fonctionnelle ¢ qui n’a pas la
forme o, avec aucuny € €*. Sur l’espace ¢ C {°° des suites convergentes, on pose
p(x) = limz, ; on le prolonge par Hahn-Banach. Si on avait o(x) = > Xnyn
avec y € LY, on aurait y, = ¢(e,) = 0 pour toute indicatrice e,, du singleton

{n}; mais alors y = 0 tant que ¢ # 0.

Exemple 2.9.6. En plongeant (> isométriquement dans L*°(R) par

1, ten,n+1[, neN
F(x)(t) =
0, t<0

pour x € £°°, on peut définir une fonctionnelle (f) = @(F~Lf) sur F(£>),
de norme 1, et la prolonger sur L>°(R) par Hahn-Banach. Si ce prolongement

étant Uintégrale avec une fonction g € LY(R), on aurait pour tout n

n+1
/ g= w(I[nn+1[) = (p(en) =0,
mais
/0 9= VIjp<yoo]) = p(1) =1,

ce qui est impossible.

Exemple 2.9.7. Si u n'est pas o-finie, l'assertion reste vraie pour 1 < p < co.
St p = 1, firons d’abord un exemple d’une mesure non-o-finie : X = R, p la

mesure de comptage (qui est infinie sur toutes les parties infinies),
F={ACR: A ouR\ A est dénombrable}.

Soit B C R non-dénombrable de complément R\ B non-dénombrable (par exemple,

B =10,1]), et soit ¢ € L*(R, p)* définie par

e(f)=>_ f@), feL'Rp).

reB
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Alors ¢ est bien définie, linéaire, et bornée de norme 1. Pourtant, si on avait

© =4 avec g € L*®(p), on aurait du avoir g = I, ce qui la fait non-mesurable.
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